Partial Wave Analysis Activities at Bochum

Bertram Kopf

PANDA XLV. Collaboration Meeting GSI, 24-28 June, 2013

Outline

- Status of the PAWIAN software
 - summary of the (new) functionalities
- PWA activities with relevance for PANDA
 - Crystal Barrel @ LEAR data
 - motivation related to PANDA-specific aspects
 - channels of interest
- PWA activities with BESIII data
 - motivation
 - channels of interest

PAWIAN Package

PWA activities for PANDA started in Bochum in spring 2010 with the aims:

- to develop a generic, user friendly and highly modular PWA software package
- to support all physics cases to be studied with PANDA and partly other hadron spectroscopy experiments

Software package PAWIAN (**PA**rtial **W**ave **I**nteractive **AN**alysis) already in a good shape and first analyses are in progress

- Full hypothesis and other input settings defined via configuration files
- Event based maximum likelihood fit
- Minimization with MINUIT2 in multithreaded and networked mode
- qft++: decay amplitudes in various formalisms (*M. Williams (CLAS, GlueX)* Computer Physics Communications, Vol. 180, Issue 10, 2009)

PAWIAN: Status

Supported reactions

- ightarrow $\overline{p}p$: L_{max} unlimited, different L combinations for each production mode possible
- → e⁺e⁻: initial state described in helicity formalism
- Formalisms (so far for mesons only)
 - helicity and canonical
 - Rarita Schwinger (still to be validated)
- Event generator
 - with obtained fit result and phase space in PAWIAN ASCII-format and HepMC format (so far not implemented in generic part)
- QA and evaluation
 - automated histogramming; trees
 - goodness of fit: logLh+ndf; BIC and AIC (Bayes and Akaike Information Criterion)
 - fractions of the individual waves incl. statistical errors
 - extraction of the spin density matrix incl. statistical error

>

General Settings

```
Mode for the error logger:
                                             debug, trace, routine, info, warn, alert
errLogMode = debug
datFile
           = /data/sleipnir1/DataPPPMETA.dat
mcFile = /data/sleipnir1/McPPPMETA.dat
unitInFile = MEV
                                                   access to the data
orderInFile = Px Py Pz E
ratioMcToData = 3
useEventWeight = true
pdgTableFile = /Particle/pdtNew.table
                                                   access to the particle data table
cacheAmps = true
                                                    enable/disable caching
paramFile = ./defaultparams.dat
                                                      of fitted amplitudes
mode = pwa
                                                   access to initial fit parameter
```

application mode:

pwa, server, client, dumpDefaultParams, qa, plot, spinDensity

5

Treating of fit parameter

```
# PwaParamBuddy: Fixing 34 parameters.

# one pbarp singlet and one triplet phase
mnParFix = J0P-1C1L0S0pbarpPhi
mnParFix = J1P-1C-1L0S1pbarpPhi

# productions and decays
mnParFix = J0P-1C1L2S2_J0P-1C1Toa2(1320)_pionMag
mnParFix = J0P-1C1L2S2_J0P-1C1Toa2(1320)_pionPhi
mnParFix = J1P-1C-1L2S2_J1P-1C-1Toa2(1320)_pionMag
mnParFix = J1P-1C-1L2S2_J1P-1C-1Toa2(1320)_pionPhi
mnParFix = J1P1C-1L1S2_J1P1C-1Toa2(1320)_pionMag
mnParFix = J1P1C-1L1S2_J1P1C-1Toa2(1320)_pionPhi
```

```
replaceParamSuffix = a0(980)+_pion- a0(980)_pion
replaceParamSuffix = a0(980)-_pion+ a0(980)_pion
replaceParamSuffix = a0(980)+Topion+_eta a0(980)Topion_eta
replaceParamSuffix = a0(980)-Topion-_eta a0(980)Topion_eta

replaceMassKey = a2(1320)+ a2(1320)
replaceMassKey = a2(1320)- a2(1320)
replaceMassKey = a0(980)+ a0(980)
replaceMassKey = a0(980)- a0(980)
```

merging of fit parameter and replacing of fit parameter names

Hypotheses and choice of models and formalisms

```
production = rho0 eta
production = omega eta
production = a2(1320)+ pion-
production = a2(1320) - pion+
production = a0(980)+ pion-
production = a0(980) - pion+
production = f2(1270) eta
production = pipiS eta
decay = Cano rho0 To pion+ pion-
decay = Cano omega To pion+ pion-
decay = Cano a2(1320)+ To pion+ eta
decay = Cano a2(1320) - To pion - eta
decay = Cano a0(980) + To pion + eta
decay = Cano a0(980) - To pion - eta
decay = Cano f2(1270) To pion+ pion-
decay = Cano pipiS To pion+ pion-
```

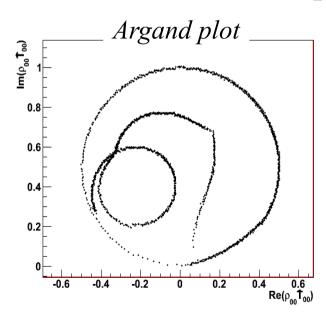
```
Supported formalisms: canonical ("Cano"), helicity ("Heli") and tensor ("Tensor")
```

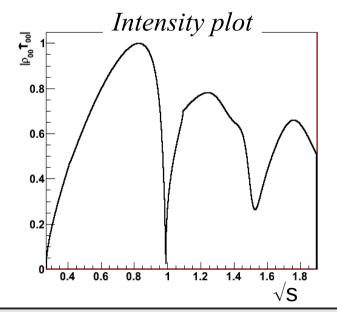
definition of the decay chain

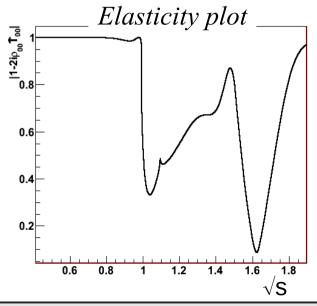
```
addDynamics = rho0 BreitWigner
addDynamics = omega BreitWigner
addDynamics = a2(1320)+ BreitWigner
addDynamics = a2(1320)- BreitWigner
addDynamics = a0(980)+ Flatte K+ K
addDynamics = a0(980)- Flatte K- K
addDynamics = f2(1270) BreitWigner
addDynamics = pipiS(PiPiSWaveAS)
```

Supported dynamics: Breit-Wigner, Flatté, K-matrix with $(\pi\pi)_s$ - and $(K\pi)_s$ -wave

definition of dynamics


K-Matrix Parametrization: $(\pi\pi)_{s}$ -wave

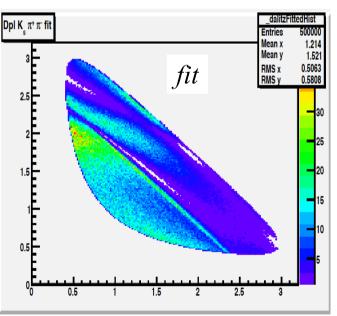

- Parametrization by Anisovich and Sarantsev, Eur. Phys. J. A16, 229(2003)
- 5 poles and 5 different channels up to 1900 MeV/c²

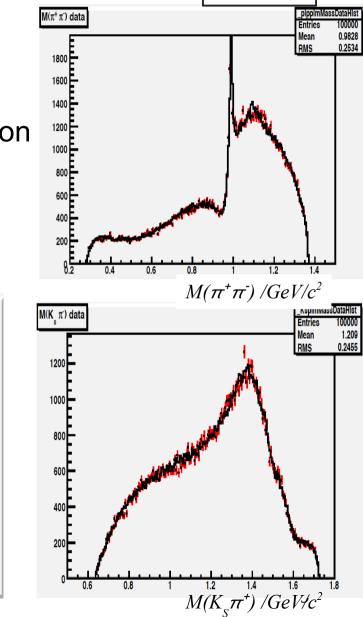

TABLE I. K-matrix parameters from a global analysis of the available $\pi\pi$ scattering data from threshold up to 1900 MeV/ c^2 [39]. Masses and coupling constants are given in GeV/ c^2 .

m_{α}	$g^{lpha}_{oldsymbol{\pi}^+oldsymbol{\pi}^-}$	$g^{lpha}_{Kar{K}}$	$g^{lpha}_{4\pi}$	$g^{lpha}_{\eta\eta}$	$g^{lpha}_{\eta\eta'}$
0.65100	0.228 89	-0.55377	0.00000	-0.39899	-0.34639
1.20360	0.941 28	0.55095	0.00000	0.39065	0.315 03
1.55817	0.368 56	0.23888	0.55639	0.18340	0.18681
1.21000	0.336 50	0.40907	0.85679	0.19906	-0.00984
1.82206 s ₀ ^{scatt} -3.92637	0.181 71 f_{11}^{scatt} 0.233 99	-0.17558 f_{12}^{scatt} 0.15044	-0.79658 f_{13}^{scatt} -0.20545	-0.00355 f_{14}^{scatt} 0.32825	0.223 58 f_{15}^{scatt} 0.354 12
$s_{A0} = -0.15$	s_A	0.13044	0.203 43	0.32023	0.554 12

Spectra obtained with PAWIAN







K-Matrix Parametrization: $(K\pi)_s$ -wave

- K-Matrix parametrization used by FOCUS
 - > Phys. Lett. B653 (2007) 1-11
- Test with toy MCs: D \rightarrow K_S $\pi^{+}\pi^{-}$
 - BaBar generator with LASS parametrization for $(K\pi)_s$ -wave and Anisovich K-matrix parametrization for $(\pi\pi)_s$ -wave provided by *A. Pitka*
 - > Good agreement between fit and toy data: $\chi^2/\text{ndf} = 1.03$

data

fit

Histogramming and Parallelization

```
histMass = pion+ pion-
histMass = pion+ eta
histMass = pion- eta
histAngles = pion+ from pion+ pion- eta
histAngles = pion- from pion+ pion- eta
histAngles = eta from pion+ pion- eta
histAngles = pion+ from pion+ pion-
histAngles = eta from pion+ eta
histAngles = eta from pion- eta
```

standard histograms for invariant masses and angular decay distributions

```
noOfThreads = 4
serverPort = 22333
serverAddress = pc14
noOfClients = 8
```

setup for multithreaded and networked mode

PWA Challenges @ PANDA

pp production mechanism

- Contributing initial pp states rise with increasing beam momentum
 - number of fit parameters rises dramatically
- $p_{\overline{p},max}$ = 1.94 GeV/c @ CB-LEAR $\rightarrow L_{max} \approx 5$
- $p_{\overline{p},max}$ = 15 GeV/c @ PANDA \rightarrow L_{max}=?
 - threshold effects relevant for production of heavy resonances (e.g. charmonia)

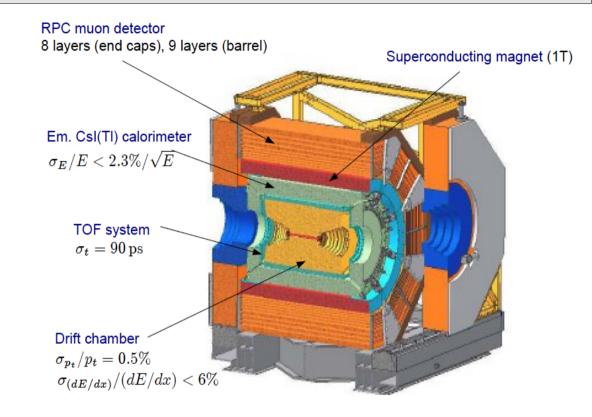
J	Singulett	J^{PC}	Triplett	J^{PC}	Triplett	J^{PC}
	$\lambda = 0$		$\lambda = \pm 1$		$\lambda = \pm 1, 0$	
0	$^{1}S_{0}$	0-+			$^{3}P_{0}$	0++
1	${}^{1}P_{1}$	1+-	${}^{3}P_{1}$	1++	${}^{3}S_{1}, {}^{3}D_{1}$	1
2	$^{1}D_{2}$	2^{-+}	$^{3}D_{2}$	2	$^{3}P_{2}, ^{3}F_{2}$	2^{++}
3	${}^{1}F_{3}$	3+-	${}^{3}F_{3}$	3++	$^{3}D_{3}, ^{3}G_{3}$	3
4	$^{1}G_{4}$	4-+	$^{3}G_{4}$	4	$^{3}F_{4}, ^{3}H_{4}$	4++
5	$^{1}H_{5}$	5^{+-}	$^{3}H_{5}$	5^{++}	$^{3}G_{5}, ^{3}I_{5}$	5
6	$^{1}I_{6}$	6^{-+}	$^{3}I_{6}$	6	$^{3}H_{6}, ^{3}J_{6}$	6^{++}

Statistics

- Low cross sections for some channels of interest (pb-nb)
- How many events are needed for reliable fits?

PWA related to PANDA

- Analysis of Crystal Barrel @ LEAR data
 - → pp annihilation with beam momenta up to 1.94 GeV/c → overlap with PANDA
 - offline software installed and running
 - raw data available on disk
- Investigation of pp annihilation process and production mechanism of vector mesons at various beam momenta (0.6-1.94 GeV/c)


```
 \overline{pp} \rightarrow \omega \pi^{0} \rightarrow (\gamma \pi^{0}) \pi^{0} 
 \overline{pp} \rightarrow \omega \pi^{0} \rightarrow (\pi^{+}\pi^{-}\pi^{0}) \pi^{0} 
 \overline{pp} \rightarrow K^{+}K^{-}\pi^{0} \text{ with the focus on } \phi \pi^{0} \text{ and } K^{*\pm}K^{\mp}
```

- Identification of intermediate resonances in pp reactions
 - $\rightarrow \overline{p}p \rightarrow \pi^{+}\pi^{-}\eta$ @ 900 MeV/c *E. Köz (Master Thesis)*

PWA of BESIII Data

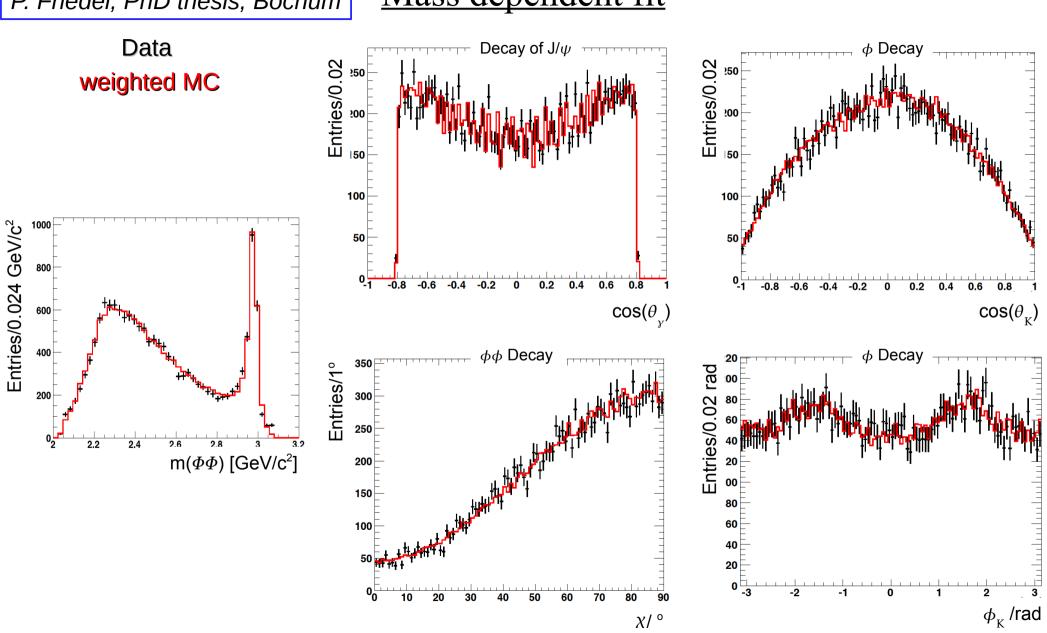
- Symmetric e⁺e⁻ collider
 - beam energy 1.0-2.3 GeV
 - > max. luminosity 10³³ cm⁻²s⁻¹
- Physics program
 - light meson spectroscopy
 - charmonium spectroscopy
 - open charm physics

> . . .

- PWA activities focused on search for exotic particles
 - \rightarrow initial states limited to J^{PC}=1⁻ with helicities $\lambda = \pm 1$
- Radiative decays from charmonia, especially from J/ψ
 - gluon rich process

$J/\psi \rightarrow \phi \phi \gamma$

- Glueballs decay flavor blind
 - \rightarrow strong coupling to $\phi\phi$
 - > one of the most promising channels: $J/\psi \rightarrow \phi\phi\gamma \rightarrow (K^+K^-)(K^+K^-)\gamma$
- Lightest tensor glueball predicted between 2.0-2.4 GeV/c²
- Unexpected large cross sections of three f_2 resonances in $\pi^- p \to n \phi \phi$ (Atkin et. al.: Phys.Lett. B201 (1988) 568-572)


PWA Strategy

- Mass independent fits by scanning the invariant $\phi\phi$ mass
 - identification of the strongest waves
- Mass dependent fits in the complete phase space using Breit-Wigner and Flatté parametrizations
- Helicity formalism
- First results very promising and good description of the data

$J/\psi \rightarrow \phi \phi \gamma$

Mass dependent fit

PWAs with BESIII-data

$$\psi(2S) \rightarrow \chi_{c0} \gamma \rightarrow (K^+ K^- \pi^0 \pi^0) \gamma$$
 (J. Schulze, PhD Thesis)

$$\psi(2S) \rightarrow \chi_{c0} \gamma \rightarrow (K_S K_I \pi^0 \pi^0) \gamma$$
 (C. Motzko, PhD Thesis)

$$J/\psi \rightarrow \phi \phi \gamma \rightarrow (K^+K^-) (K^+K^-) \gamma$$
 (P. Friedel, PhD Thesis)

$$J/\psi, \ \psi(2S) \rightarrow \pi^{+}\pi^{-}\eta$$
 (M. Leyhe, PhD Thesis)

$$J/\psi \rightarrow \omega \phi \gamma \rightarrow (\pi^+\pi^-\pi^0) (K^+K^-) \gamma$$
 (P. Scheffels, Diploma Thesis)

$$J/\psi \rightarrow \omega\omega\gamma \rightarrow (\pi^{+}\pi^{-}\pi^{0})(\pi^{+}\pi^{-}\pi^{0})\gamma$$
 (M. Albrecht, PhD Thesis)

$$\psi(2S) \rightarrow \chi_{c1} \gamma \rightarrow (K^+ K^- \eta) \gamma$$
 (M. Pelizäus)

$$J/\psi \rightarrow \phi \phi \gamma \rightarrow (K^+K^-)(K_sK_L) \gamma$$
 (M. Pelizäus)