

Production of Vector Mesons in pp-Reactions

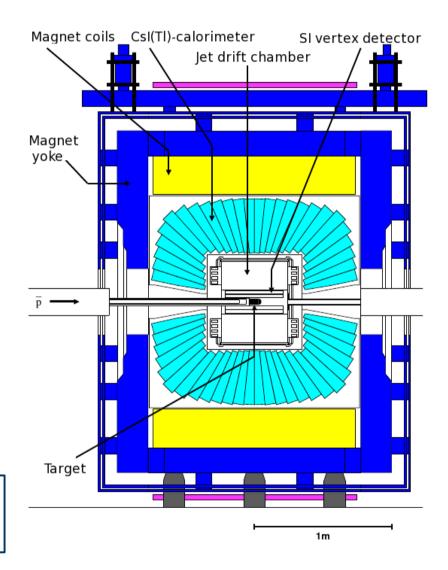
Julian Pychy
PANDA XLV. Collaboration Meeting
June 26th 2013

Outline

- Introduction
 - PWA Software
 - Crystal Barrel LEAR
- PWA of CB-LEAR data with relevance for PANDA
 - $\overline{p}p \to \omega \pi^0$
 - $\overline{p}p \to K^+K^-\pi^0$
 - $\overline{p}p \to \pi^+\pi^-\eta$
- Summary

Motivations

With regard to the upcoming PANDA experiment, analyses of existing $\bar{p}p$ -data are valuable


Crystal Barrel LEAR

- Development and test of analysis tools for PANDA, such as the partial wave analysis (PWA) software
- Study of the production of vector mesons and the initial $\bar{p}p$ -states
- Evaluation of the contributing orbital angular pp-momenta
 - $p_{\overline{p},max}$ = 1.94 GeV/c @ CB-LEAR \rightarrow L_{max} \approx 5
 - $p_{\overline{p}}$ = (1.5 15) GeV/c @ PANDA \longrightarrow L_{max} = ?
- Evaluation of the spin density matrix for different mesons
- Modern hardware allows more sophisticated analyses of old data

Crystal Barrel

- Fixed target experiment at LEAR (CERN) data taking 1989 - 1996
- p̄p-annihilation in flight and at rest
- $p_{\overline{p}}$ = 105 MeV/c ... 2 GeV/c
- $94\% \cdot 4\pi$ detector
- Targets: LH₂, LD₂, GH₂
- Trigger on 0 or 2 charged particles

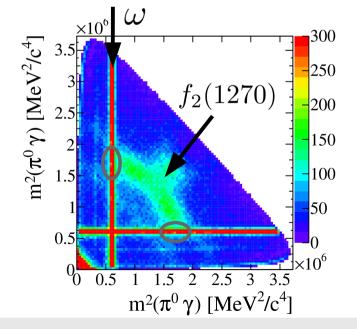
Excellent opportunity for the investigation of specific physics aspects for PANDA

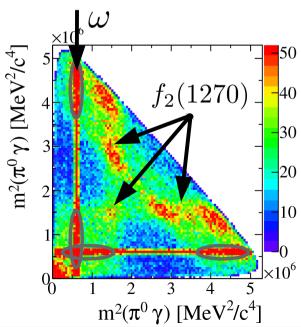
PWA Software Package

PWA activities for PANDA started in Bochum in spring 2010 with the aims:

- To develop a generic PWA software package
- To support all physics cases to be studied with PANDA
- And partly other hadron spectroscopy experiments

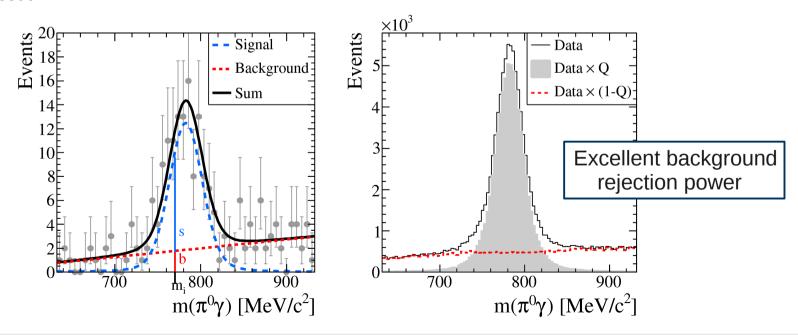
Software package PAWIAN (**PA**rtial **W**ave Interactive **AN**alysis) already in a good shape, and first analyses have been started


- Full hypothesis and other input settings defined via configuration files
 - Resonances, Decays, ...
 - Formalisms (Canonical, Helicity, Rarita-Schwinger)
 - Dynamics (Breit-Wigner, Flatté, K-Matrix, ...)
- Event based maximum likelihood fit, minimization by MINUIT2
- Multithreading and networking support
- qft++ library for various physical calculations


$\overline{p}p \to \omega \pi^0$ - Data selection

- Relatively simple reaction with easy access to the initial pp-system
- Analyzed channels: $\overline{p}p \to \omega(\to \pi^+\pi^-\pi^0)\pi^0 \to \pi^+\pi^-4\gamma$ $\overline{p}p \to \omega(\to \pi^0\gamma)\pi^0 \to 5\gamma$
- Various beam momenta between 0.6 and 1.94 GeV/c
- Noticeable background still present after kinematic fit

e.g. from
$$\overline{p}p \to \pi^0 f_2(1270) \to \pi^0 \pi^0 \pi^0$$


Background crossing the ω -bands!

Background rejection

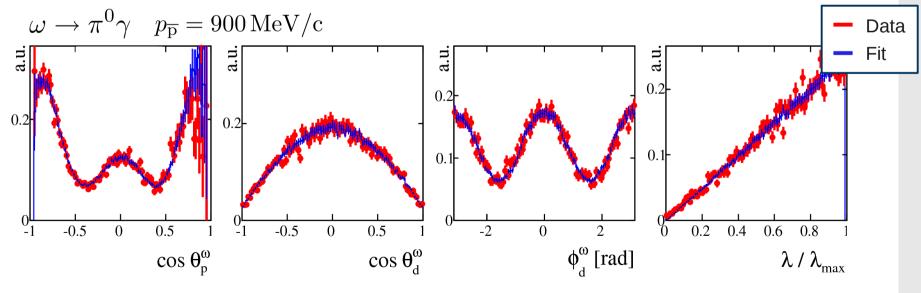
- New background rejection method based on probabilistic event weights M. Williams, http://arxiv.org/abs/0809.2548
- Event weight for each event
 - find n nearest neighbors in phasespace and calculate weight out of signal component in the invariant mass spectrum
- Origin of the background sources not necessarily needed to be known

PWA: $\overline{p}p \rightarrow \omega \pi^0$

- Maximum contributing orbital momentum L_{max} is unknown
 - perform fits for various L_{max} and calculate significance of likelihood improvement

$L_{ m max}$	1	2	3	4	5	6	7
Cont. waves	3	7	9	13	15	19	21
Free parameters	4	12	16	24	28	36	40

Acceptance correction using Monte Carlo events from cbgeant


Fit results and contributing angular momenta

			+	- 0
ω	\rightarrow	π	' π	π

$p_{ar{p}p}$ [MeV/c]	L _{max}	significand $\frac{\ln \mathcal{L}(L_{max})}{\ln \mathcal{L}(L_{max}-1)}$	te of \mathcal{L} -ratio $\frac{\ln \mathcal{L}(L_{max}+1)}{\ln \mathcal{L}(L_{max})}$	$\chi^2/$ ndf
900	4	4.7 σ	0.17σ	1.07
1525	4	13.2σ	0.94 σ	1.08
1642	5	3.6σ	0.14 σ	0.98
1940	5	13.8σ	0.25σ	1.04

$$\omega \to \pi^0 \gamma$$

<i>р_{Бр}</i> [MeV/c]	L _{max}	significand In $\mathcal{L}(L_{max})$ In $\mathcal{L}(L_{max}-1)$	te of \mathcal{L} -ratio $\frac{\ln \mathcal{L}(L_{max}+1)}{\ln \mathcal{L}(L_{max})}$	$\chi^2/$ ndf
600	3	2.4σ	0.11σ	0.91
900	4	4.9σ	0.01σ	1.18
1050	4	15.1σ	0.86σ	0.92
1350	5	5.8σ	0.02σ	1.01
1525	5	10.3σ	0.1σ	1.09
1642	5	5.6σ	$2\cdot10^{-3} \sigma$	1.09
1800	5	14.2 σ	1.4σ	1.14
1940	5	13.9σ	0.6 σ	0.96

Spin density matrix of the ω

- Provides full information on the production mechanism
- Spin 1 particle: 3x3 complex elements
- Normalization, hermicity and parity conservation yields to only 4 independent parameters

$$\rho = \begin{pmatrix} 1/2(1-\rho_{00}) & \Re\rho_{10} + i\Im\rho_{10} & \rho_{1-1} \\ \Re\rho_{10} - i\Im\rho_{10} & \rho_{00} & -\Re\rho_{10} + i\Im\rho_{10} \\ \rho_{1-1} & -\Re\rho_{10} - i\Im\rho_{10} & 1/2(1-\rho_{00}) \end{pmatrix} \qquad \begin{array}{c} \rho_{00} \neq \rho_{11} \\ \Rightarrow \text{Alignment} \\ \Rightarrow \text{Alignment} \\ \end{array}$$

Extraction of the elements via PWA

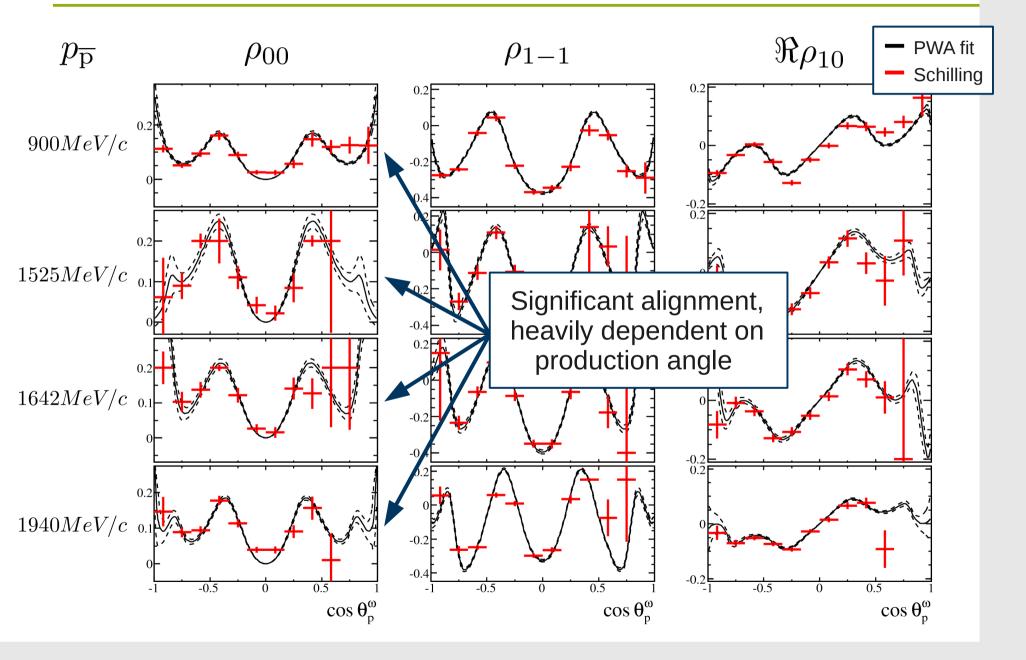
H. Koch, Helicity amplitude for pp-> $\omega \pi 0$. Internal PANDA Note

$$\rho_{\lambda_{\omega}\lambda_{\omega}'} = \frac{1}{\sum_{\lambda_{\overline{p}},\lambda_{p},\lambda_{\pi^{0}},\lambda_{\omega}} |T_{\lambda_{\overline{p}}\lambda_{p}\lambda_{\pi^{0}}\lambda_{\omega}}|^{2}} \cdot \sum_{\lambda_{\overline{p}},\lambda_{p},\lambda_{\pi^{0}}} T_{\lambda_{\overline{p}}\lambda_{p}\lambda_{\pi^{0}}\lambda_{\omega}}^{*} T_{\lambda_{\overline{p}}\lambda_{p}\lambda_{\pi^{0}}\lambda_{\omega}}^{*}$$

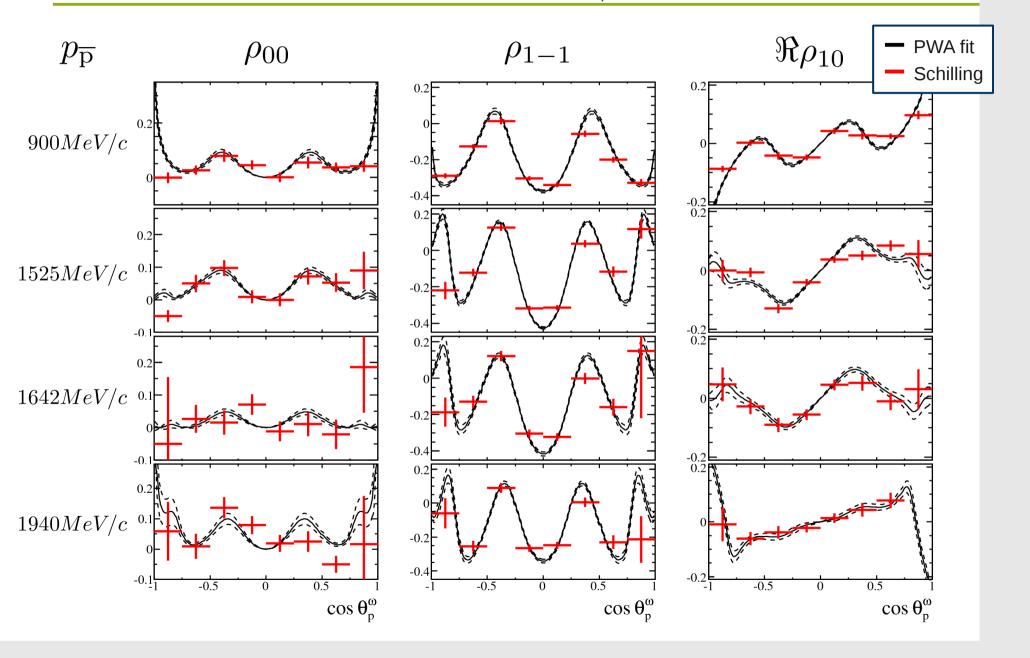
Or via fit to decay angular distribution

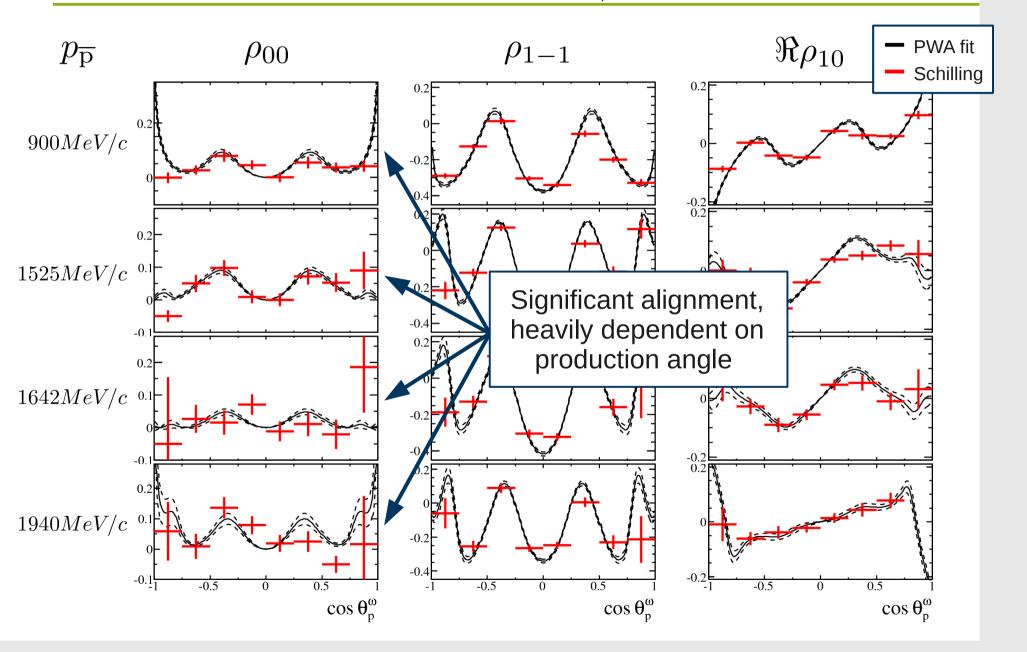
$$W_{\omega \to \pi^+ \pi^- \pi^0}(\cos \theta, \phi) = \frac{3}{4\pi} \left(\frac{1}{2} (1 - \rho_{00}) + \frac{1}{2} (3\rho_{00} - 1) \cos^2 \theta \right)$$

Schilling, Seyboth and Wolf, Nucl. Phys. B15 (1970) 397-412, Erratum-ibid. B18 (1970) 332

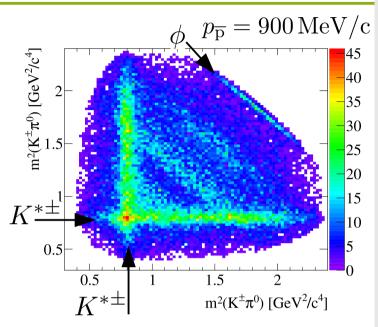

"Schilling's method"

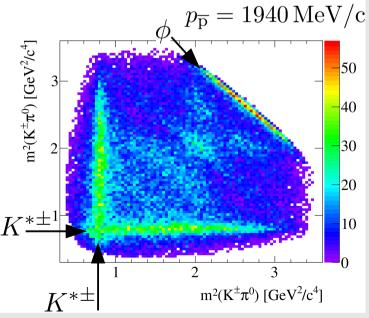
 $-\sqrt{2}\Re\rho_{10}\sin 2\theta\cos\phi - \rho_{1-1}\sin^2\theta\cos 2\phi$


Spin density matrix ($\omega \to \pi^+\pi^-\pi^0$)


Spin density matrix ($\omega \to \pi^+\pi^-\pi^0$)

Spin density matrix ($\omega ightarrow \pi^0 \gamma$)




Spin density matrix ($\omega ightarrow \pi^0 \gamma$)

$$\overline{p}p \to K^+K^-\pi^0$$

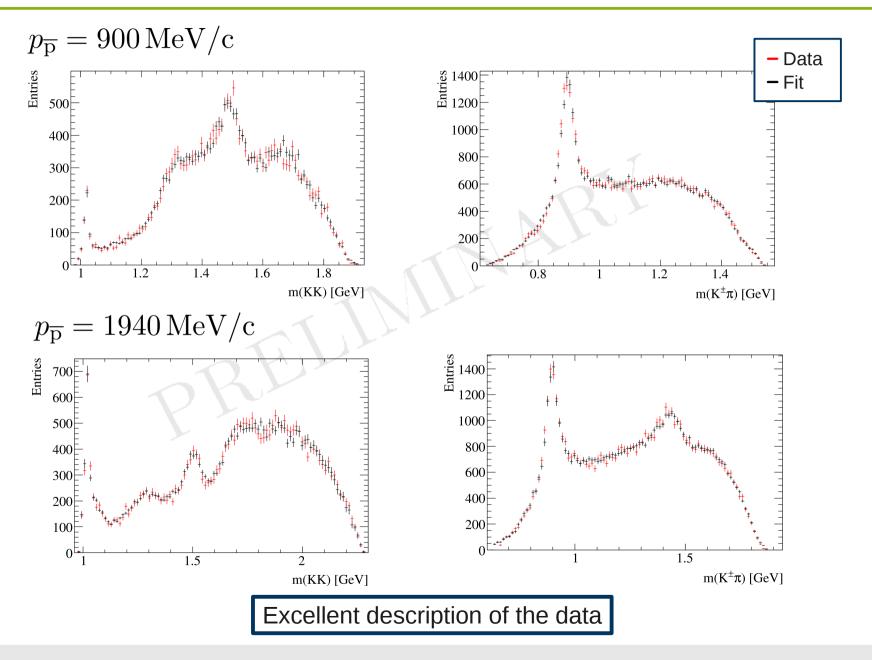
- Contains $\phi\pi^0$ and $K^{*\pm}K^{\mp}$ events
- Production of vector mesons with strangeness
 - different process in comparison to ω production
 - rearrangement vs. annihilation
- Interference of resonances requires a PWA of the complete channel
- Spin density matrix via extraction of the fitted ϕ and $K^{*\pm}$ amplitudes

RUB

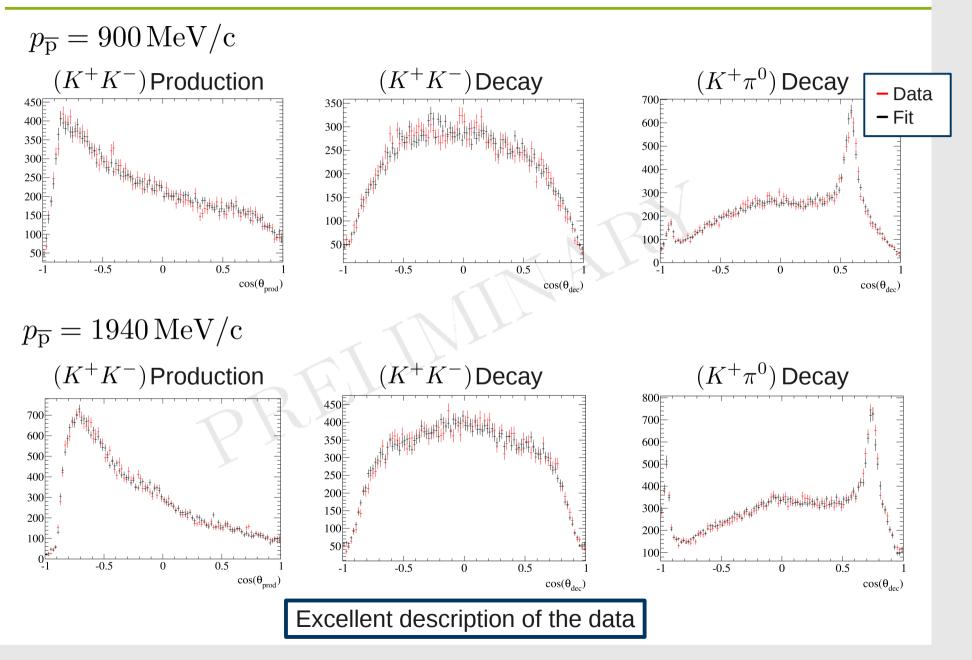
PWA: $\overline{p}p \to K^+K^-\pi^0$

- Full PWA from the initial to the final state
- L_{max}= 4 @ 900 MeV/c and 1940 MeV/c
- Hypotheses based on previous results (Crystal Barrel: Phys. Lett. B639 (2006) 165)
 - $\phi \pi^0, \ \phi(1680)\pi^0$
 - $f_2(1270)\pi^0, f_2'(1525)\pi^0$
 - $a_2(1320)\pi^0$
 - $K^{*\pm}K^{\mp}, K^{*}(1680)^{\pm}K^{\mp}$
 - > all $f_0\pi^0$ -channels via $(KK)_S$ -wave

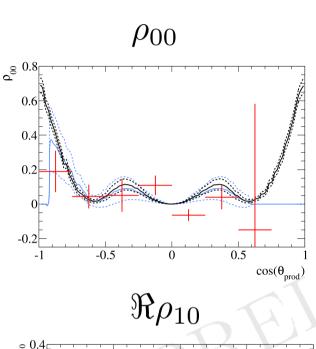
K-matrix parametrization by Anisovich and Sarantsev Eur. Phys. J. A16, 229(2003)

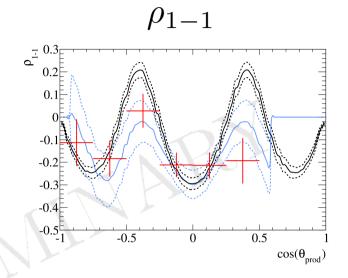

- > all $K_0^{*\pm}K^{\mp}$ -channels via $(K\pi)_S(I=1/2)$ -wave
- $K(K\pi)_S(I=3/2)$ -wave

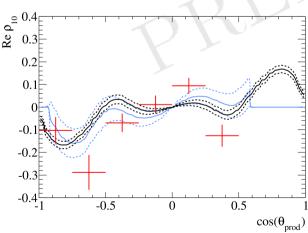
K-matrix parametrization used by FOCUS Phys. Lett. B653 (2007) 1-11


- Many resonances yield in a large number of fit parameters
 - 420 @ 900 MeV
- Fit becomes time consuming (weeks)
- 464 @ 1940 MeV

Determination of L_{max} difficult


$\overline{p}p \to K^+K^-\pi^0$: Fit results




$\overline{p}p \to K^+K^-\pi^0$: Fit results

Spin density matrix ($\phi \rightarrow K^+K^-$)

$$p_{\overline{p}} = 900 \,\mathrm{MeV/c}$$

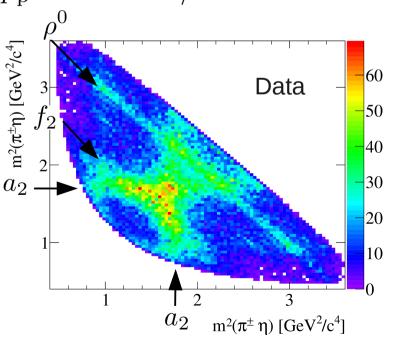
- Full PWA
- $lue{}$ PWA of isolated ϕ
- Fit of angular distribution

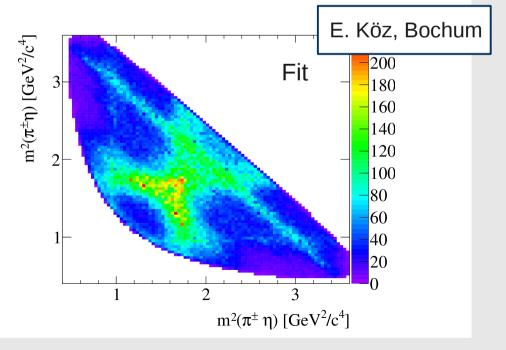
PWA: $\overline{p}p \to \pi^+\pi^-\eta$

Hypotheses

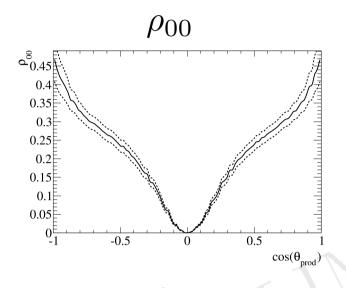
$$\rightarrow \rho^0 \eta , \omega \eta$$

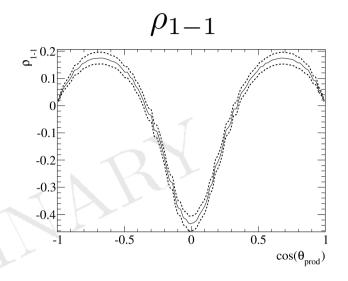
$$a_2(1320)^{\pm}\pi^{\mp}$$

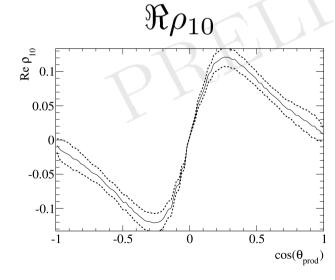

$$a_0(980)^{\pm}\pi^{\mp}$$


$$\rho (1405)^{\pm} \pi^{\mp}$$

$$f_2(1270)\eta$$


$$\rightarrow (\pi\pi)_S \eta$$


 $p_{\overline{\rm p}} = 900\,{\rm MeV/c}$ K-matrix parametrization by Anisovich and Sarantsev Eur. Phys. J. A16, 229(2003)



Spin density matrix $(\rho^0 \to \pi^+\pi^-)$

$$p_{\overline{p}} = 900 \,\mathrm{MeV/c}$$

Summary

- Analyses of Crystal Barrel LEAR data with relevance for PANDA
- p̄p initial states and production of vector mesons
- $\overline{p}p \rightarrow \omega \pi^0$
 - New background rejection method
 - L_{max} rises from 3 @ 600 MeV/c to 5 @ 1940 MeV/c
 - Extraction of the ω-SDM via full PWA
 - Strong alignment and oscillation of ho_{00} along the production angle
- $\overline{p}p \to K^+K^-\pi^0$ and $\overline{p}p \to \pi^+\pi^-\eta$
 - Excellent description of the data
 - Extraction of the SDM for ϕ , $K^{*\pm}$, ρ and other resonances possible