

Hyper-, hypofractionation and accelerated radiotherapy

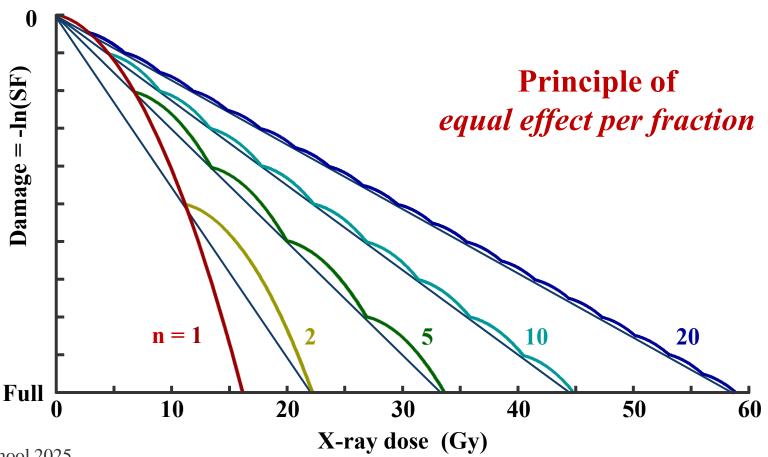
Prof. Vincent GREGOIRE, MD, PhD, FRCR Centre Léon Bérard, Lyon, France

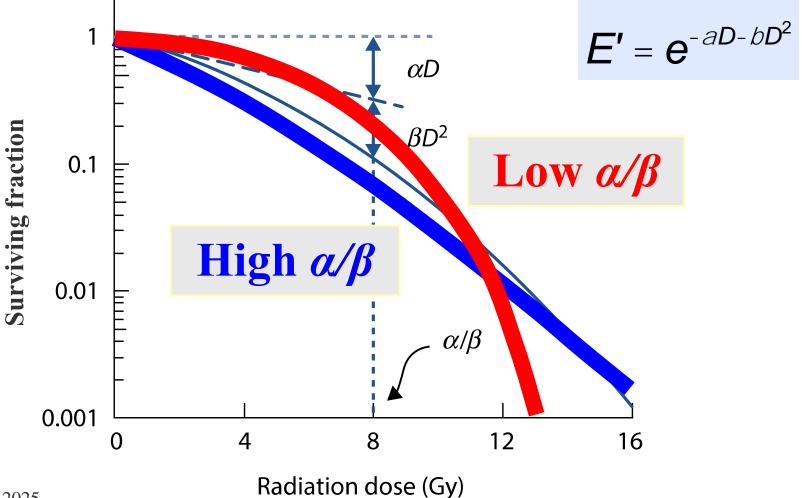
The paradigm of radiotherapy

Conventional fractionation

1.8 – 2.0 Gy per fraction, 5 fractions per week

	Example	Dose (Gy)	Tumor control (%)
Sensitive	Seminoma, Lymphoma	≤ 45	≥ 90
Intermediate	SCC,	50	≥ 90 (subclinical)
	Adeno-Ca	60	~ 85 (Ø 1 cm)
		70	~ 70 (Ø 3 cm)
			~ 30 (Ø 5 cm)
Resistant	Glioblastoma	≥ 60	none?
	Melanoma	≥ 60	none?

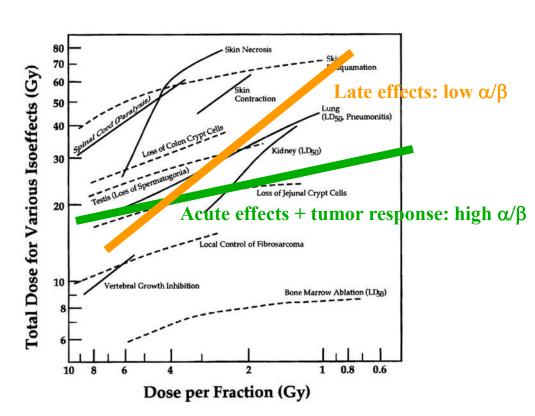

Prototypes of modified fractionation


- Hyperfractionation (HF)
- Accelerated fractionation (AF)
- (Hybrid schedules)
- Hypofractionation

Prototypes of modified fractionation

- Hyperfractionation (HF)
- Accelerated fractionation (AF)
- (Hybrid schedules)
- Hypofractionation

Less effect per gray at low doses per fraction



Fractionation sensitivity

"Typical" dose per fraction

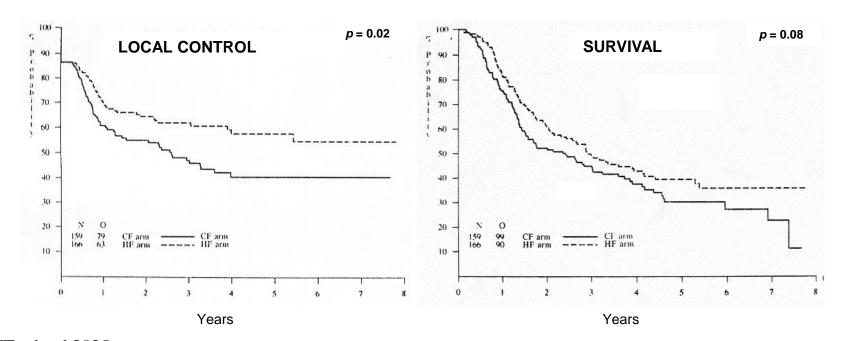
- 1.8-2 Gy for standard fractionation
- 1.1-1.3 Gy for hyper-fractionation

UPLIFT school 2025

Withers et al, 1983

Hyperfractionation (HF)

reduced dose per fraction (< 1.8 Gy)


Expectations (dose-escalated HF):

- Increased tumor control
- More severe early reactions
- Unchanged or less late reactions

EORTC Hyperfractionation trial in oropharynx cancer (N = 356)

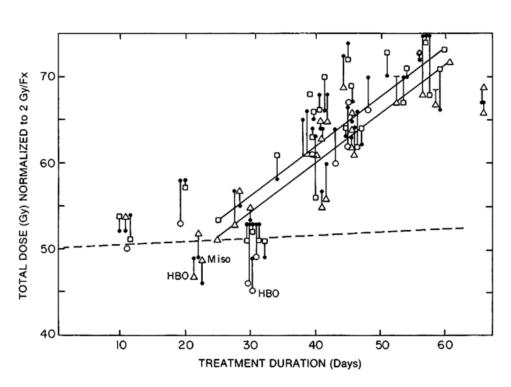
Oropharyngeal Ca T2-3, N0-1

80.5 Gy - 70 fx - 7 wks vs 70 Gy - 35-40 fx - 7-8 wks

UPLIFT school 2025

Toxicity of RT in HNSCC

Early effect in accelerated or hyperfrationation RxTh


Author		Regimen	Grade 3-4 mucositis		
			Control	Experimental	
	Horiot (n=356)	HF	49%	67%	
	Horiot (n=512)	Acc. fract. + split	50%	67%	
	Dische (n=918)	CHART	43%	73%	
	Fu (n=536)	Acc. frac (CB)	25%	46%	
	Fu (n=542)	Acc. fract. + split	25%	41%	
	Fu (n=507)	HF	25%	42%	
	Skladowski (n=99)	Acc. Fract.	26%	56%	

Dische, 1997 Fu, 2000 Horiot, 1992 Skladowski, 2000

Prototypes of modified fractionation

- Hyperfractionation (HF)
- Accelerated fractionation (AF)
- (Hybrid schedules)
- Hypofractionation

Influence of overall treatment time on HNSCC local control

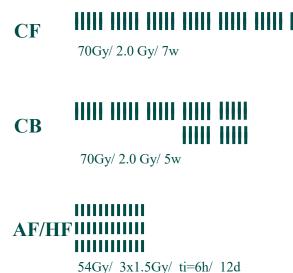
UPLIFT school 2025
Withers et al, 1988

Tissue proliferation and recovered dose D_{prolif}


Tissue	Endpoint	D _{prolif} (Gy day ⁻¹)	95% CL (Gy day ⁻¹)	T _k ^b (days)	Source
Early reactions				III _P	
Skin	Erythema	0.12	[-0.12; 0.22]	<12	Bentzen et al. (2001)
Mucosa	Mucositis	0.8 -	[0.7; 1.1]	<12	Bentzen et al. (2001)
Lung	Pneumonitis	0.54	[0.13; 0.95]		Bentzen et al. (2000) ^a
Tumours					
Head and neck					
Larynx		0.74	[0.30; 1.2]		Robertson et al. (1998)
Tonsils		0.73		30	Withers et al. (1995)
Various		8.0	[0.5; 1.1]	21	Robers et al. (1994)
Various		0.64	[0.42; 0.86]		Hendry et al. (1996) ^a
Breast		0.60	[0.10; 1.18]		Haviland et al. (2016)
Oesophagus		0.59	[0.18; 0.99]		Geh et al. (2005)
Non-small cell lung cancer		0.45	N/A		Koukourakis et al. (1996
Medulloblastoma		0.52	[0.29; 0.75]	0 or 21	Hinata et al. (2001)
Prostate		0.24	[0.03; 0.44]	52	Thames et al. (2010)

Note: Reference details are available from Søren Bentzen.

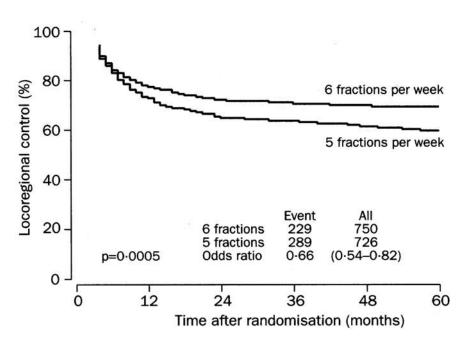
^a Pooled estimate from a review of studies in the literature.


 $^{^{\}rm b}$ $T_{\rm k}$ is the assumed time for the onset of accelerated proliferation.

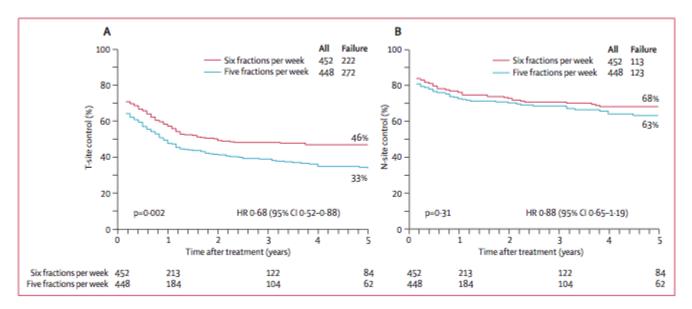
Influence of overall treatment time on HNSCC local control

Accelerated fractionation (AF)

Shortened overall treatment time, dose per week > 10 Gy


Expectations:

- Increased tumor control
- Increased early reactions
- Unchanged or decreased late damage (AF/HF and/or reduced total dose)


DAHANCA 6&7 - H&N

SCC - stage II-IV (n=1476)

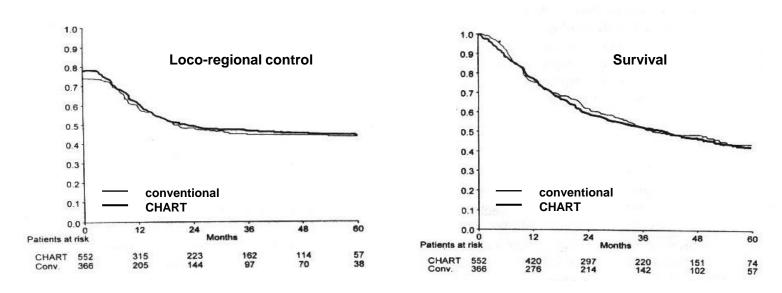

Five versus six fractions of radiotherapy per week for squamous-cell carcinoma of the head and neck (IAEA-ACC study): a randomized, multicentre trial

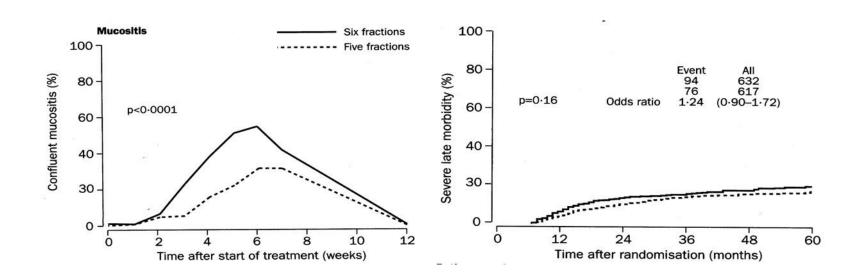
CHART - Head & Neck (MRC, UK)

SCC, >T1 N0 M0, WHO 0-1 (n=918)

Toxicity of RT in HNSCC

Early effect in accelerated or hyperfrationation RxTh

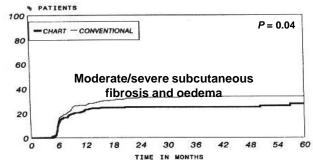
Author	Regimen	Grade 3-4	mucositis
		Control	Experimental
Horiot (n=356)	HF	49%	67%
Horiot (n=512)	Acc. fract. + split	50%	67%
Dische (n=918)	CHART	43%	73%
Fu (n=536)	Acc. frac (CB)	25%	46%
Fu (n=542)	Acc. fract. + split	25%	41%
Fu (n=507)	HF	25%	42%
Skladowski (n=99)	Acc. Fract.	26%	56%

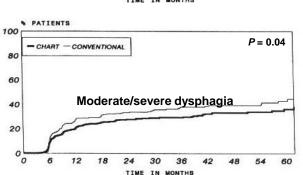

Dishes, 1997 Horiot, 1992 Fu, 2000 Skladowski, 2000

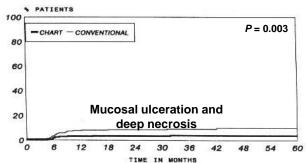
DAHANCA 6&7 - H&N

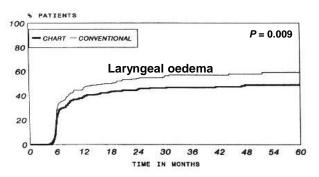
SCC - stage II-IV (n=1476)

64-68 Gy/ 2.0 Gy/ 5.5w

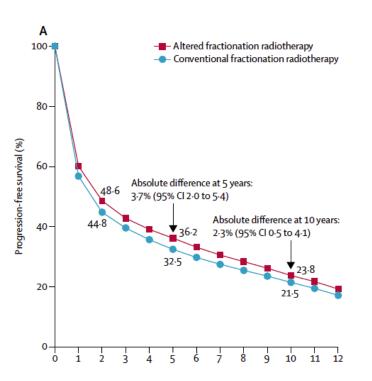


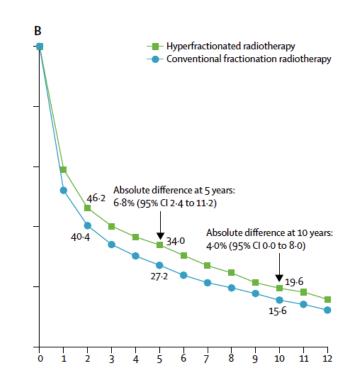

CHART - Head & Neck (MRC, UK)


SCC, >T1 N0 M0, WHO 0-1 (n=918)



54 Gy/ 3 x 1.5 Gy/ ti 6 h/ 12 d (n=552)

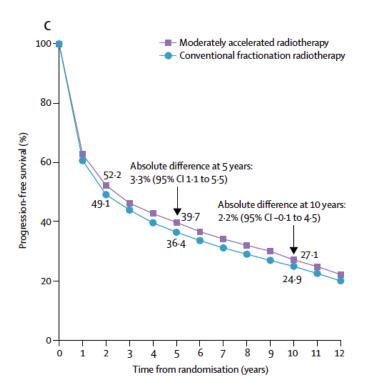


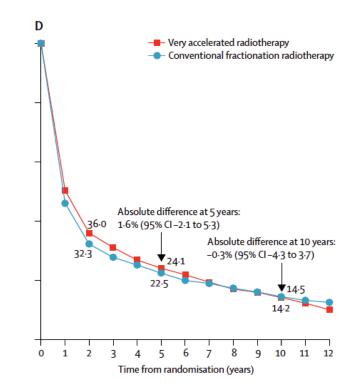


Dische et al., Radiother. Oncol. 44: 123-136, 1997

Meta-analysis on altered fractionation HNSCC

Randomized trials 1970-2010 (no postop RT) 33 trials included (11423 patients, individual data)




UPLIFT school 2025

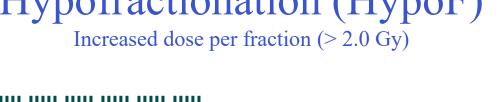
Lacas et al., 2017

Meta-analysis on altered fractionation HNSCC

Randomized trials 1970-2010 (no postop RT) 33 trials included (11423 patients, individual data)

Meta-analysis on altered fractionation in loc. adv. NSCLC Randomized trials 1970-2005 (no postop RT) 10 trials included (2000 patients, individual data)

3 0110015 1		(L	9	ii via oioii aoi
Category	No. Deaths	/ No. Entered				
Trial	Exp. RT	Conv. RT	O-E	Variance	HR	HR (95% CI)
Very accelerated F	RT					
PMCI 88C091	48/48	52/53	-0.8	24.3		
PMCI 88C091 CT	51/51	56/56	6.0	25.6		_
CHART	316/338	217/225	-29.4	120.7	- -	
ECOG 2597	51/60	55/59	-7.4	25.8		
CHARTWEL	132/150	132/150	0.2	65.8	4	
CHARTWEL CT	40/53	47/53	-6.4	21.2		
Subtotal	638/700	559/596	-37.8	283.4	*	0.88 (0.78 to 0.98
Moderately accele	rated RT					
Gliwice 2001	26/29	27/29	-1.4	13.2		
Subtotal	26/29	27/29	-1.4	13.2		0.90 (0.52 to 1.54
Hyperfractionated	RT_identical	total dose				
NCCTG 902451	34/39	35/35	-7.0	15.7		
NCCTG 942452	111/125	108/121	-2.6	54.6		
Subtotal	145/164	143/156	-9.6	70.3	-	0.87 (0.69 to 1.10
Hyperfractionated	RT_increase	total dose				
RTOG 8808	155/163	156/163	-6.4	76.9	<u> </u>	
Subtotal	155/163	156/163	-6.4	76.9	-	0.92 (0.74 to 1.15
Total	964/1,056	885/944	-55.2	443.7		0.88 (0.80 to 0.97), P = .00
Total	304/1,030	000/344	-55.2	443.7		0.88 (0.80 to 0.87), F = .00
Test for heterogen	eity: $\gamma^2 = 9.7$	4. P = .37. l ² :	= 8%			
Test for interaction				77	100	1.00
rest for interaction	$1. \chi_3^2 = 0.17, F$	= .80		0.25	1.00	4.00
				Experiment better		onventional RT better


Summary...

- In case of increase in OTT,
 - for HNSCC, NSCLC, oesophageal carcinoma: compensation by accelerating the treatment
 - for cervix and anal canal carcinoma: data exist on the adverse effect of prolongation of OTT, thus compensation
 - for brain, prostate and breast carcinoma: no compensation
 - for palliative treatment : no compensation
- Keep in mind that radiotherapy is a very cost-effective treatment modality, providing it is properly delivered

Prototypes of modified fractionation

- Hyperfractionation (HF)
- Accelerated fractionation (AF)
- (Hybrid schedules)
- Hypofractionation

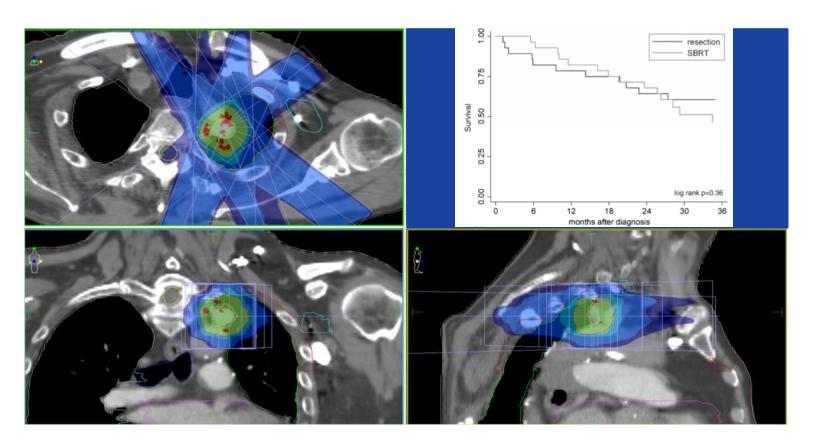
Hypofractionation (HypoF)

Moderate Hypo F (curative)

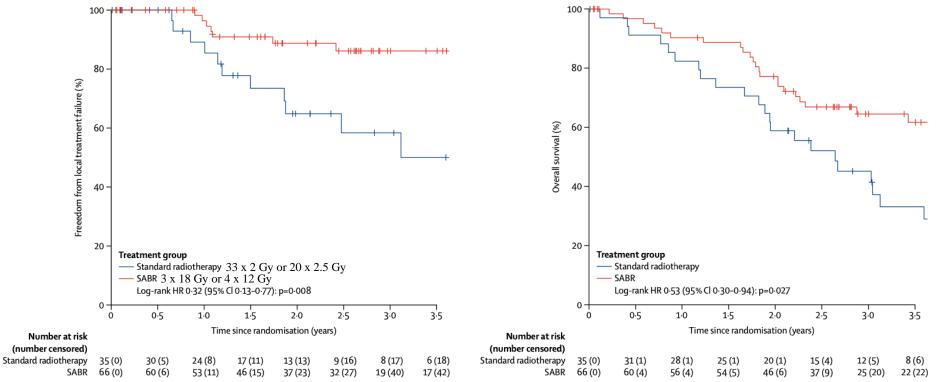
Conventional

Curative RT

67.5 Gy/13.5 Gy/ 2w

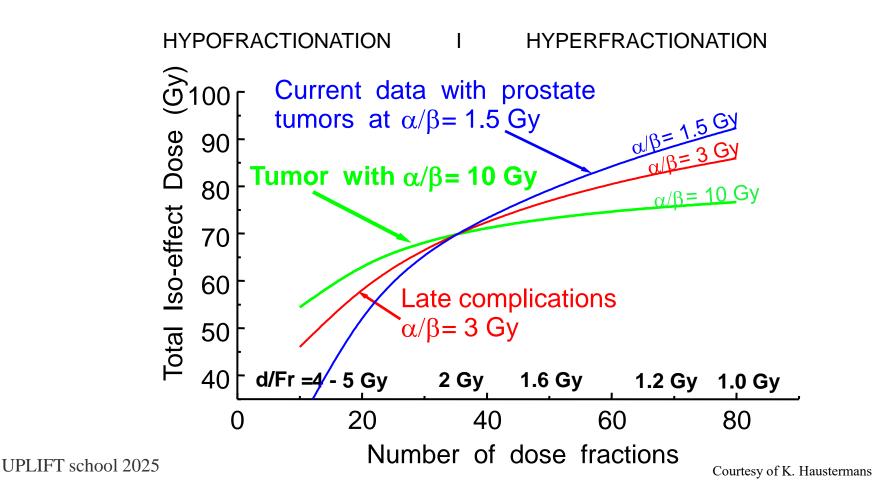

HypoF

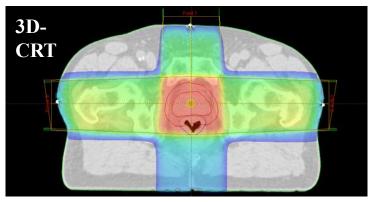
SD 8 Gy

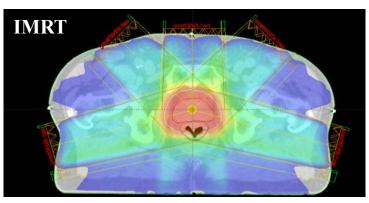

30 Gy/ 3.0 Gy/ 2w

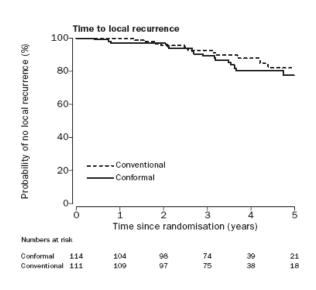
Palliative RT

IMRT/SBRT for **NSCLC**

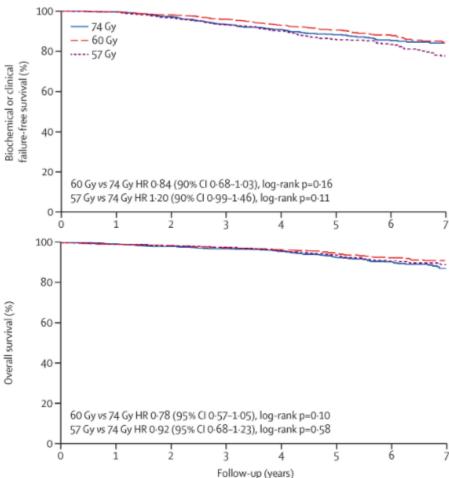

Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial


SBRT – early/late toxicity


- Severe toxicity rate < 5%
- Pneumonia \geq G3 in 0-5%
- Chest wall toxicity in peripherally located tumors: wall pain, fibrosis, rib fracture in 10%
- Plexopathy in upper tumors
- Severe toxicities (fatale hemoptysis, fistulae...) in centrally-located with 3 fraction schemes

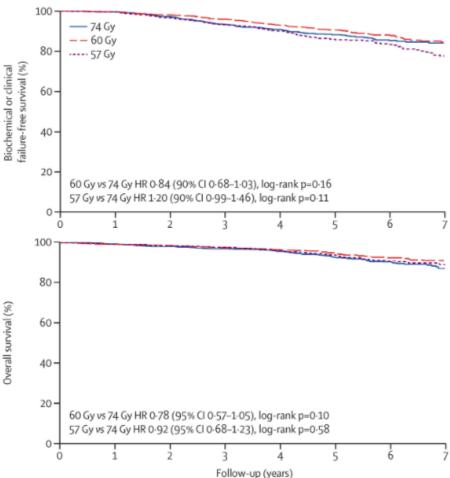

Radiobiological and clinical issues in IMRT for prostate C

Conformal irradiation for prostate tumors


 \geq grade 2 proctitis: 15% >< 5% (p= 0.01)

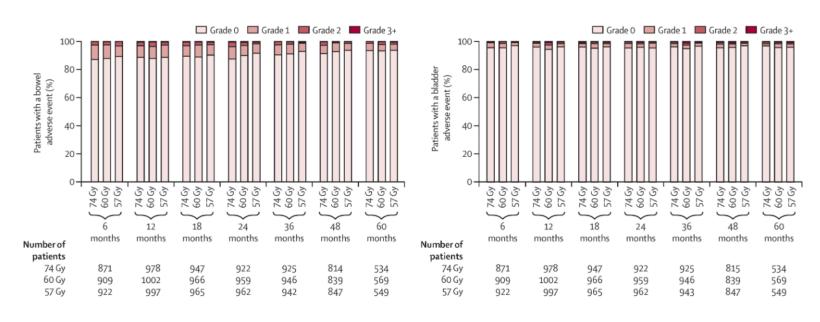
UPLIFT school 2025 Dearlaney, 1999

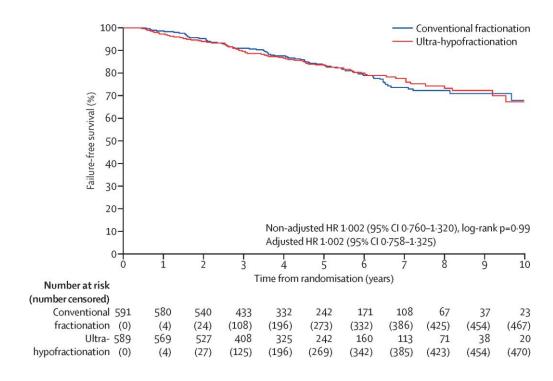
Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial


David Dearnaley, Isabel Syndikus, Helen Mossop, Vincent Khoo, Alison Birtle, David Bloomfield, John Graham, Peter Kirkbride, John Logue, Zafar Malik, Julian Money-Kyrle, Joe M O'Sullivan, Miguel Panades, Chris Parker, Helen Patterson*, Christopher Scrase, John Staffurth, Andrew Stockdale, Jean Tremlett, Margaret Bidmead, Helen Mayles, Olivia Naismith, Chris South, Annie Gao, Clare Cruickshank, Shama Hassan, Julia Pugh, Clare Griffin, Emma Hall, on behalf of the CHHiP Investigators

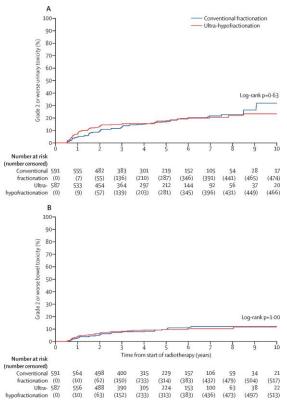
74 Gy (37 x 2 Gy) in 7.4 w >< 60 Gy (20 x 3.0 Gy) in
$$4$$
w >< 57 Gy (19 x 3 Gy) in 3.8w

UPLIFT school 2025


Dearnaley et al., Lancet Oncology, 2016



 α/β : 1.8 Gy


Late bowel toxicity

Late bladder toxicity

Intermediate-to-high-risk prostate cancer 78 Gy (39 x 2 Gy) in 8 w >< 42.7 Gy (7 x 6.1 Gy) in 2.5w

Intermediate-to-high-risk prostate cancer

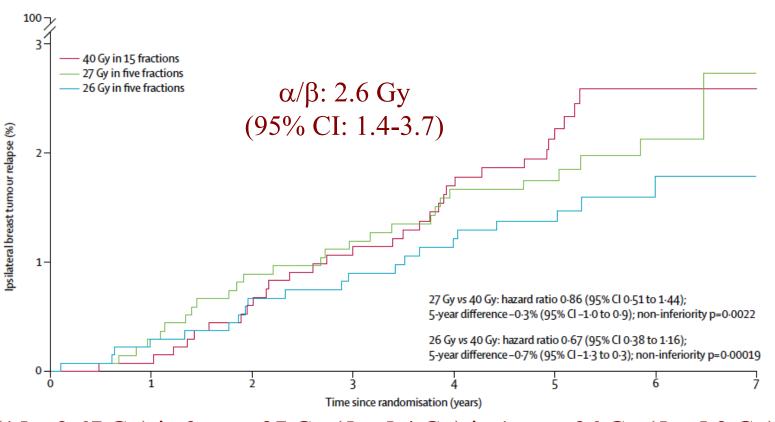
78 Gy (39 x 2 Gy) in 8 w >< 42.7 Gy (7 x 6.1 Gy) in 2.5w

Hypofractionation in breast cancer

The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials

Joanne S Haviland, J Roger Owen, John A Dewar, Rajiv K Agrawal, Jane Barrett, Peter J Barrett-Lee, H Jane Dobbs, Penelope Hopwood, Pat A Lawton, Brian J Magee, Judith Mills, Sandra Simmons, Mark A Sydenham, Karen Venables, Judith M Bliss*, John R Yarnold*, on behalf of the START Trialists' Group†

50 Gy (25 x 2 Gy) in 5 w \approx 40 Gy (15 x 3.3 Gy) in 3w


Hypofractionation in breast cancer (START)

UPLIFT school 2025 α/β : 3.5 Gy (95% CI: 1.2-5.7)

Haviland, Lancet Oncology, 2013

Hypofractionation in breast cancer (FAST-forward)

40 Gy (15 x 2.67 Gy) in 3w >< 27 Gy (5 x 5.4 Gy) in 1w >< 26 Gy (5 x 5.2 Gy) in 1w

Conclusions

- Benefit of hyper- and accelerated fractionation for locoregional control probability
- Slight increase in acute toxicity but no change in late toxicity
- Moderately hypofractionation for tumors with low α/β
- Extreme hypofractionation for well selected indications, e.g. small peripheral lung tumors (dose distribution effect only!)