Health Economics

Lionel Perrier, PhD, HDR

Centre Léon Bérard

GATE Lyon Saint-Etienne (CNRS, Université Lumière Lyon 2, Université Jean Monnet, emlyon business school), Lyon, France

Uplift First School 17-22 November 2025

Schedule

- A. Objectives and context
- B. Taxonomy of health care evaluations and international guidelines
- c. Effectiveness and costs assessment
- D. Applications to advanced radiotherapy

Schedule

- A. Objectives and context
- B. Taxonomy of health care evaluations and international guidelines
- c. Effectiveness and costs assessment
- D. Applications to advanced radiotherapy

Objectives

In a highly changing context (increase of innovation, rising costs, higher financial constraints, etc.), this Uplift course in health economics aims to detail:

- the evaluation tools to be mobilized to assess the efficiency of health innovations;
- to show how these new conditions contribute making regulatory processes / pricing mechanims more complex;

Specificity of the Health Care Market

- Health care: collection of services, products, institutions, regulations...
- Uncertainty/asymmetric knowledge: how well individual treatments works? Large difference in knowledge between doctors and patients...
- Government interventions: formal certification process before to practice. Minimum level of health insurance coverage; rules determining access to health care...
- Technical change...
- Lack of pricing transparency...

Specificity of the Health Care Market

Growth on medical prices

"The USA spent \$99 billion on orally administered and clinician-administered anticancer therapies (excluding supportive care) in 2023 and spending is projected to increase to \$180 billion by 2028".

Source Jazowski SA et al. The high costs of anticancer therapies in the USA: challenges, opportunities and progress. Nat Rev Clin Oncol. 2024 Oct 4. doi: 10.1038/s41571-024-00948-1. Epub ahead of print. Erratum in: Nat Rev Clin Oncol. 2024 Oct 30. doi: 10.1038/s41571-024-00958-z. PMID: 39367130. https://pubmed.ncbi.nlm.nih.gov/39367130/

"Between 1995 and 2023, the combined direct and indirect costs of cancer across all (31 European countries) countries increased by 43% from EUR 159 billion to EUR 228 billion"

<u>Source: Andrea Manzano et al.</u> The development of the cost of cancer in 31 European countries.. J Clin Oncol 43, 1596-1596(2025).DOI: 10.1200/JCO.2025.43.16_suppl.1596 https://ascopubs.org/doi/pdf/10.1200/JCO.2025.43.16_suppl.1596

Source: https://www.academie-medecine.fr/face-au-cout-eleve-des-nouveaux-traitements-medicaux-en-cancerologie/

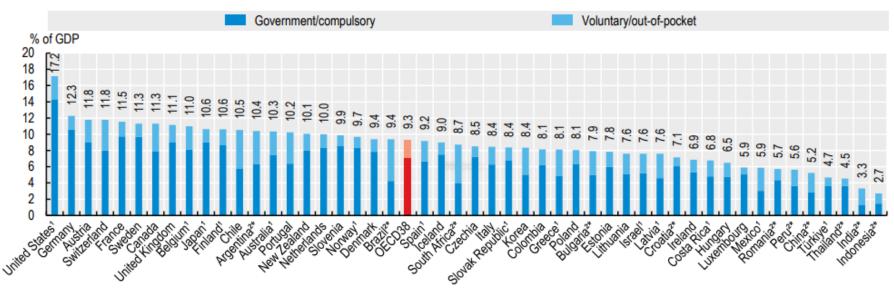
Specificity of the Health Care Market

The French National Academy of Medicine makes the following recommendations:

- To the health authorities to:

- Improve the design of clinical trials, in order to better assess the improvement in the medical benefit provided, particularly concerning rare cancers;
- Significantly shorten the time required to obtain authorization to start a phase 1 clinical trial and, for ATMs, in requiring the Good Manufacturing Practice (GMP) file only at the time of the request marketing authorization;
 - Limit the use of the accelerated approval procedure to unmet clinical needs;
- Strengthen European cooperation in clinical trials, analyze the causes of the very high cost of some treatments and the process of price setting, and encourage the involvement of the academic sector, particularly in the production of CAR-T Cells (4), in order to exert downward pressure on the price level;
 - Develop medico-economic evaluations based on real-life cohort studies;
 - Ensure access to treatments for all patients, regardless of where they live.

- To the pharmaceutical industry:

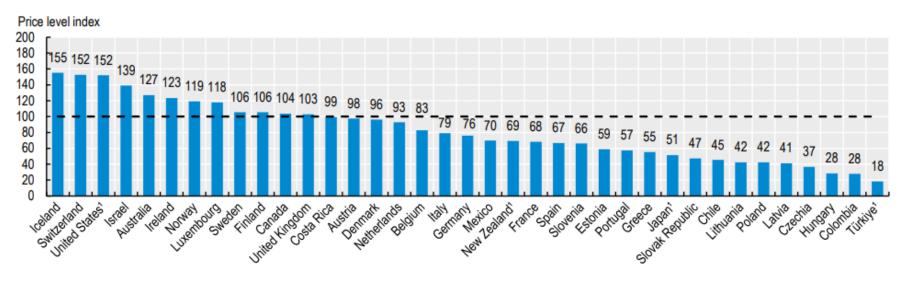

— Ensure the rigor of post-authorization or post-listing studies, for example on the monitoring of side effects, particularly in the auto-immune field.

- To prescribers:

- Exercise an extreme rigor in prescribing these treatments and in monitoring patients in the short, medium or long term;
 - Offer patients the opportunity to participate in therapeutic cohort studies.

Health spending

Figure 7.1. Health expenditure as a share of GDP, 2024 (or nearest year)

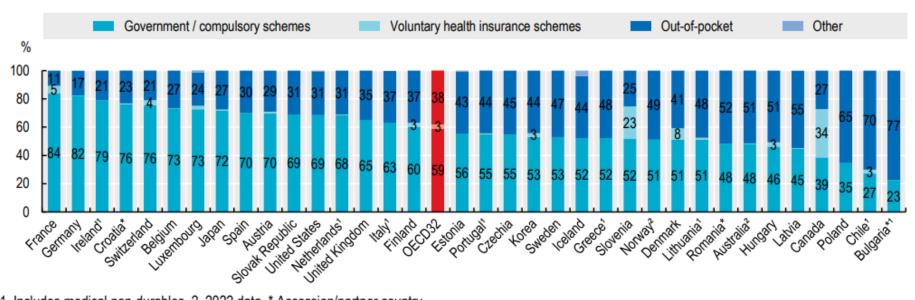

1. OECD estimate for 2024. 2. 2022-2023 data. * Accession/partner country.

Source: OECD Health Statistics 2025; WHO Global Health Expenditure Database.

StatLink https://stat.link/15fht6

Health spending

Figure 7.6. Comparative price levels in the health sector, 2023 (OECD average = 100)



For hospitals, PPPs are estimated predominantly by using salaries of medical and non-medical staff (input method).
 Source: OECD Statistics 2025.

StatLink https://stat.link/zw0b9d

Health spending

Figure 9.2. Expenditure on retail pharmaceuticals by type of financing, 2023 (or nearest year)

Includes medical non-durables. 2. 2022 data. * Accession/partner country.
 Source: OECD Health Statistics 2025.

StatLink https://stat.link/gq278w

Health at a Glance 2025

OECD Indicators

Source: https://www.oecd.org/en/publications/health-at-a-glance-2025 8f9e3f98-en.html
Health at a Glance 2025 (EN)

Schedule

- A. Objectives and context
- B. Taxonomy of health care evaluations and international guidelines
- c. Effectiveness and costs assessment
- D. Applications to advanced radiotherapy

Cost analysis of three-dimensional **radiation therapy** versus intensitymodulated chemoradiotherapy for locally advanced cervical cancer in Peruvian citizens.

Díaz JFR.

Ecancermedicalscience. 2023 Apr 20;17:153

PMID: 37138970 Free PMC article.

Cost-effectiveness of intraoperative **radiation therapy** versus intensity-modulated **radiation therapy** for the treatment of early breast cancer: a disinvestment **analysis**.

Muñoz-Montecinos C, González-Browne C, Maza F, Carreño-Leiton D, González P, Chahuan B, Quirland C.

BMC Health Serv Res. 2024 Apr 3;24(1):417. doi: 10.1186/s12913-024-10739-0.

> Clinicoecon Outcomes Res. 2024 Jun 6:16:483-492. doi: 10.2147/CEOR.S461798. eCollection 2024. rticle.

Cost-Effectiveness and Budget Impact Analyses of Selective Internal Radiation Therapy versus Atezolizumab Plus Bevacizumab from a German Statutory Health Insurance Perspective

Bjoern Schwander ¹, Katharina Klesper ², Siegbert Rossol ³, Ken Herrmann ⁴, York Francis Zoellner ⁵

Cost-Utility **Analysis** of Stereotactic Body **Radiation Therapy** Versus Surgery for Patients With Stage I Non-small Cell Lung Cancer in Japan.

Igarashi A, Onishi H, Shioyama Y, Matsumoto Y, Takayama K, Matsuo Y, Yamashita H, Miyakawa A,

Cost-benefit analysis of advanced CBCT imaging: Incremental costs and savings. Lee DW, Ito K.

Larrotta-Castillo DA, Blommestein HM, Kunnen B, Penninkhof JJ, van de Schoot AJAJ, Hoogeman MS, 6-67. doi: 10.1016/j.ijrobp.2024.07.2328. Epub 2024 Sep

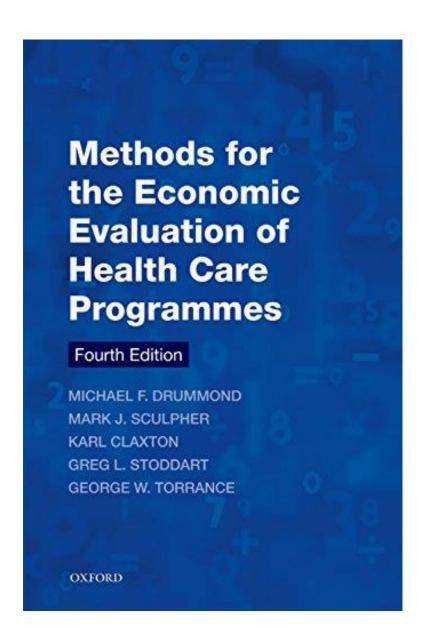
Petit SF.

Radiother Oncol. 2025 Oct;211:111106. doi: 10.1016/j.radonc.2025.111106. Epub 2025 Aug 14.

PMID: 40818490 Free article.

Advanced CBCT systems can replace separate CT scans higher investments costs compared to conventional CBC

A value-based approach to prostate cancer image-guidance in a regional radiation therapy centre: a cost-minimisation analysis.


Robards S, Brown A, Pain T, Patel D, Tan A, Carter H.

Tech Innov Patient Support Radiat Oncol. 2022 Dec 2;24:131-136. doi: 10.1016/j.tipsro.2022.11.002.

eCollection 2022 Dec.

PMID: 36561985 Free PMC article.

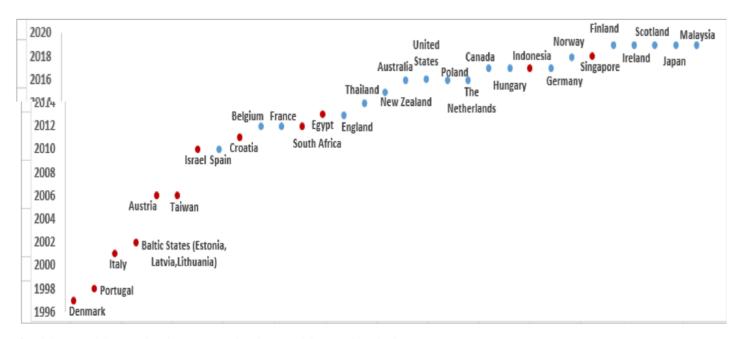
13

Drummond, M., Sculpher, M.J., Claxton, K., Stoddart, G.L., Torrance, G.W., Askews & Holts Library Services, 2015. Methods for the economic evaluation of health care programmes. Oxford university press

Are both costs and outcomes of health care programmes examined?

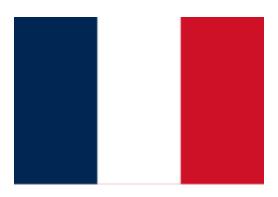
Is there a comparison of two or more health care programmes?

		No		Yes			
		(Examination of outcomes only)	(Examination of costs only)	(Examination of costs and outcomes)			
	No	Partial evo	aluation	Partial evaluation			
f		Outcome description	Cost description	Cost-outcome description			
•		Partial evo	aluation	Full economic evaluation			
	Yes	Efficacy/ effectiveness evaluation	Cost analysis	Cost-effectiveness analysis (including cost- utility analysis)			
				Cost-benefit analysis			


REVIEW ARTICLE

National Healthcare Economic Evaluation Guidelines: A Cross-Country Comparison

Deepshikha Sharma¹ · Arun Kumar Aggarwal¹ · Laura E. Downey² · Shankar Prinja¹


Accepted: 15 December 2020 / Published online: 10 January 2021 © The Author(s) 2021

^{*}Red dots: Guidelines with only 1 version, Blue dots: Guidelines with multiple versions

Fig. 2 Timeline of the publication of national healthcare economic evaluation guidelines

Source: Sharma D, Aggarwal AK, Downey LE, Prinja S. National Healthcare Economic Evaluation Guidelines: A Cross-Country Comparison. Pharmacoecon Open. 2021 Sep;5(3):349-364. doi: 10.1007/s41669-020-00250-7. Epub 2021 Jan 10. PMID: 33423205; PMCID: PMC8333164. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8333164/pdf/41669 2020 Article 250.pdf

EVALUATING

HEALTH TECHNOLOGY

METHODOLOGICAL GUIDANCE

Choices in methods for economic evaluation – HAS

Source: https://www.has-sante.fr/upload/docs/application/pdf/2020-11/methodological_guidance_2020_-choices_in_methods_for_economic_evaluation.pdf

HAS frame of reference

The reference case analysis' – cor iposed of a base-case analysis' and a comprehensive exploration of united kimiy – restrict it exists to optical circles defining HAS' frame of reference.

	The chosen methodological options are the responsibility of the author, who must justify their choice.				
Objective	Within the framework of HAS' missions, the objective of an economic evaluation is to guide public decision-making regarding the allocation of collective resources, in particular by documenting the cost-effectiveness criteria.				
Evaluation method	Cost-effectiveness or cost-utility analysis depending on the nature of the interventions' health effects and data availability. CEA if health-related quality of life is not an important consequence. CUA if health-related quality of life is an important consequence.				
Perspective	Collective perspective or, failing that, healthcare system perspective. Population whose health is affected (identification and measure of health effects) and general population (valuation of health preferences) All of the resources involved in the production of care, irrespective of their source of funding.				
Population analysed	All of the individuals concerned, either directly or indirectly, by the intervention evaluated.				
Comparator interven- tions	All options in the population analysed should be identified. The selection of the comparator interventions should be duly justified.				
Time horizon	The choice of a time horizon spanning the entire lifetime, or a specific period should be based on an trade-off between the information produced and the uncertainty generated by extrapolation over time.				
Discounting	Beyond 12 months, discounting is based on the public discount rate applicable at the time of the evaluation (set at 2.5% at the time of publication of this guidance). After 30 years, the discount rate gradually decreases to 1.5%.				
	CEA: lifetime (indicator: life years / all-cause mortality).				
Health outcome criteria	CUA: quality-adjusted life years (indicator: QALY)				
Cost criteria	Direct costs based on production costs or, failing that, on their tariff/price.				
Conclusion of the eval-	In terms of cost-effectiveness, the results presented identify the interventio on the cost-effectiveness frontier and provide an estimate of the ICER or NB the cost-effectiveness frontier.				
uation	Exploration of uncertainty through deterministic and probabilistic approaches				
	Analysis of expenditure transfers between funders				
Critical appraisal of the	Analysis of the validity of the method and uncertainty of the results				
evaluation	Discussion on the conclusions and limitations of the evaluation				

Guideline 2: Choice of the evaluation method

The reference case analysis uses the cost-utility analysis and the cost-effectiveness analysis as economic evaluation methods. The choice of the method first depends on the nature of the health-related consequences – whether expected or observed – of the intervention being evaluated.

Source: https://www.has-sante.fr/upload/docs/application/pdf/2020-11/methodological_guidance_2020_-choices_in_methods_for_economic_evaluation.pdf

Are both costs and outcomes of health care programmes examined?

		No	1	Yes		
		(Examination of outcomes only)	(Examination of costs only)	(Examination of costs and outcomes)		
	No	Partial evo	aluation	Partial evaluation		
Is there a comparison of two or more		Outcome description	Cost description	Cost-outcome description		
health care programmes?		Partial eve	aluation	Full economic evaluation		
, -	Yes	Efficacy/ effectiveness evaluation	Cost analysis	Cost-effectiveness analysis (including cost- utility analysis) Cost-benefit analysis		

Drummond, M., Sculpher, M.J., Claxton, K., Stoddart, G.L., Torrance, G.W., <u>Askews</u> & Holts Library Services, 2015. Methods for the economic evaluation of health care programmes. Oxford university press

15

Guideline 3: Choice of the perspective

The reference case analysis should be based on a collective perspective, covering all of the people or institutions affected (in terms of health effects or cost) by the production of an intervention within the scope of the overall patient care.

Source: https://www.has-sante.fr/upload/docs/application/pdf/2020-11/methodological_guidance_2020_-choices_in_methods_for_economic_evaluation.pdf

Guideline 5: Choice of interventions to be compared

The reference case analysis should identify all clinically relevant interventions in the population analysed.

The arguments supporting the inclusion or exclusion of an intervention in the reference case analysis should be clearly set out.

> Cost Eff Resour Alloc. 2024 Sep 13;22(1):66. doi: 10.1186/s12962-024-00577-6.

Cost-effectiveness of proton beam therapy vs. conventional radiotherapy for patients with brain tumors in Sweden: results from a non-randomized prospective multicenter study

Filipa Sampaio ¹, Ulrica Langegård ² ³, Patricio Martínez de Alva ⁴, Sergio Flores ⁴, Camilla Nystrand ⁴, Per Fransson ⁵, Emma Ohlsson-Nevo ⁶, Ingrid Kristensen ⁷ ⁸, Katarina Sjövall ⁹, Inna Feldman ⁴, Karin Ahlberg ²

Radiotherapy and Oncology 183 (2023) 109417

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Guidelines

Cost-effectiveness of proton radiotherapy versus photon radiotherapy for non-small cell lung cancer patients: Exploring the model-based approach

Loeki Aldenhoven ^a, B. Ramaekers ^{a,*}, J. Degens ^b, C. Oberije ^c, J. van Loon ^d, A.C. Dingemans ^e, D. De Ruysscher ^d, M. Joore ^a

*Department of Clinical Epidemiology and Medical Technology Assessment; *Department of Respiratory Medicine, School for Nutrition and Translational Research in Metabolisms (NUTRIM); *The D-Lab: Decision Support for Precision Medicine, GROW -School for Oncology and Developmental Biology; *Department of Readition Oncology (MASTRO clinic), CROW +School for Developmental Biology; *Department of Respiratory Medicine, Evasmus MC CROW +School for Developmental Biology; *Department of Respiratory Medicine, Evasmus MC CROW +School for Developmental Biology and Devolopmental Biology and Popuration of Respiratory Medicine, Evasmus MC CROW + CROWN +

Source: https://www.has-sante.fr/upload/docs/application/pdf/2020-11/methodological_guidance_2020_-choices_in_methods_for_economic_evaluation.pdf

Cost-effectiveness of proton beam therapy vs. conventional radiotherapy for patients with brain tumors in Sweden:

results from a non-randomized prospective multicenter study - PubMed

<u>Cost-effectiveness of proton radiotherapy versus photon radiotherapy for non-small cell lung cancer patients: Exploring the model-based approach - PubMed</u>

Guideline 6: Choice of the time horizon

The time horizon of the evaluation may be defined as the entire lifetime or a specific duration.

The choice of the time horizon should be based on an trade-off between the information produced by taking into account the expected or observed consequences of an intervention over the long term, and the uncertainty generated by extrapolation over time. This trade-off should be clearly set out and the choice should be justified.

Guideline 7: Discounting method

Future costs and health outcomes should be discounted to present values whenever the time horizon exceeds 12 months.

The reference case analysis should use the public discount rate applicable at the time of the evaluation. On the date of publication of this guidance, that rate was 2.5% for time horizons of less than 30 years. Beyond that, the rate gradually decreases to a floor level set at 1.5%.

In the reference case analysis, costs and results should be discounted using the same rate.

Guideline 15: Utility score evaluation methods

The utility scores used to weight life-years should be estimated using a multi-attribute approach, comprising the collection of health state data from patients via a generic questionnaire and the valuation of health states according to the preferences of the general population.

Among available classification systems, EQ-5D-5L is recommended (French EQ-5D-5L value set and EQ-5D-5L questionnaire). The French value set which prevails at the time of the evaluation should be used.

Guideline 18: Evaluation of costs

The evaluation of the total cost of an intervention is based on the intervention's production costs. This requires the identification, measurement and valuation of the resources consumed.

The scope of the cost items evaluated depends on the perspective adopted.

Under a collective perspective, all resources consumed in the production of the overall patient care are taken into consideration. They cover the domestic sphere (e.g. informal care), the healthcare sphere (e.g. stays, procedures, and health products) and the medico-social sphere (e.g. stays, personal care services).

Under the healthcare system perspective, the resources considered are those involved in the production of care (stays, procedures, and healthcare products).

Only direct costs should be considered in the reference case analysis.

A direct cost analysis may be presented as a supplemental analysis.

Guideline 25: Exploration of uncertainty in the model

A systematic exploration of the sources of uncertainty associated with the evaluation's structural choices, the modelling choices and the model parameter estimations should be presented according to an appropriate methodology.

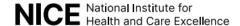
Sensitivity analyses should quantify the impact of a different structural choice in the reference case analysis (e.g. perspective, time horizon, population analysed, comparators, discount rate).

> Source: https://www.has-sante.fr/upload/docs/application/pdf/2020-11/methodological_guidance_2020_choices in methods for economic evaluation.pdf

General Methods^a

Version 7.0 of 19 September 2023

^{*} This translation is based on the German document Aligemeine Methoden (Version 7.0) of 19 September 2023. Please note: The translation is provided as a service by IQWIG to English-language readers. However, solely the German original text is absolutely authoritative and legally binding.


Table 6: Overview over the components of a reference case (multipage table)

HEE component	Explanation				
Question / decision problem	 This is defined in the G-BA's commission^a, which specifies in particular the following components: 				
Population	 E.g., the population (or individual subpopulations or subgroups) eligible for treatment with the drug to be assessed 				
Intervention and comparator(s)	 Comparison between the drug to be assessed and the treatment option of the appropriate comparator therapy used in the preceding benefit assessment procedure for the demonstration of added benefit Separate analyses are conducted taking into account the treatment costs of other treatment options covered by the appropriate comparator therapy (sensitivity analyses in the sense of a cost variation). Depending on the commission, other comparators may be considered in the HEE. A new 				
	benefit assessment including the other comparators may be necessary.				
Health economic outcome	 ICER: difference in costs divided by difference in the outcome assessed in the benefit assessment (weighted if applicable) or difference in QALYs 				
Perspective	SHI-insured community				
Time horizon	 Depending on the research question or commission, the available evidence and the perspective of the decision-maker, an appropriate time horizon is chosen that is sufficien to depict all relevant medical and economic consequences. 				
	 In addition, a 5-year time horizon is considered in a sensitivity analysis. 				
Study type HEE	 Cost-utility analysis or cost-effectiveness analysis, each with an additional BIA. 				
Effectiveness and other clinical input parameters	 A benefit assessment according to §35a SGB V should already be available. Its results are included in the decision-analytic model, particularly for determining transition probabilities. The result of the HEE does not call into question the result of the benefit assessment. Development of the decision-analytic model usually requires additional clinical input parameters to depict the health care situation. 				
Utilities	 For the calculation of QALYs, the utilities used in the decision-analytic model should be based on valuations by patients. Utilities based on valuations by the general population are particularly useful if the valuations do not differ from those of patients. 				
Costs	 The costs should be as up-to-date as possible: The resources used should be relevant and justified. Direct (medical and non-medical) reimbursable and non-reimbursable costs should be recorded. The quantification and valuation of resource use may require a combination of different approaches (bottom-up, top-down, micro- and macro[gross]-costing approaches). 				
Inflation adjustment and discounting	 If cost data are from different time periods, they need to be adjusted for inflation. After the first year in the base case, costs and benefits that last longer than 1 year should be discounted at the identical constant rate of 3% per year. 				

Source: Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen https://www.iqwig.de/en/about-us/methods/methods-

paper/https://www.iqwig.de/methoden/general-methods_version-7-0.pdf

NICE health technology evaluations: the manual

NICE process and methods Published: 31 January 2022 Last updated: 23 October 2025

www.nice.org.uk/process/pmg36

Table 4.1 Summary of the reference case

Element of health technology assessment	Reference case	Section providing details
Defining the decision problem	The scope developed by NICE	4.2.4 to 4.2.6
Comparator(s)	As listed in the scope developed by NICE	2.2.12 to 2.2.16, 4.2.6, 4.2.13
Perspective on outcomes	All health effects, whether for patients or, when relevant, carers	4.2.7, 4.2.8
Perspective on costs	NHS and personal social services (PSS)	4.2.9 and 4.2.10
Types of economic evaluation	Cost-utility analysis with fully incremental analysis Cost-comparison analysis	4.2.14 to 4.2.17 4.2.18 to 4.2.21
Time horizon	Long enough to reflect all important differences in costs or outcomes between the technologies being compared	4.2.22 to 4.2.25
Synthesis of evidence on health effects	Based on systematic review	3.4
Measuring and valuing health effects (see note)	Health effects should be expressed in quality- adjusted life years (QALYs). The EQ-5D is the preferred measure of health-related quality of life in adults	4.3.1, 4.3.6
Source of data for measurement of health- related quality of life (see note)	Reported directly by patients or carers, or both	4.3.3
	t .	

Source:

https://www.nice.org.uk/process/pmg36/chapter/introduction-to-health-technology-evaluation

home > Pricing and reimbursement > Economic evaluations > Economic Evaluations guidelines

Guidelines for submitting Health Economic **Evaluations to AIFA for pricing and reimbursement** of medicines (Section E of the dossier)

The process for pricing and reimbursement of medicinal products begins with the submission to AIFA of an application (P&R dossier) by pharmaceutical companies and ends with the resolution of the AIFA Board of Directors and the subsequent publication in the Italian Official Journal, after consulting the Technical-Scientific Committee (CTS) and the Pricing and Reimbursement Committee (CPR).

According to the Ministerial Decree 2 August 2019, pharmaceutical companies are required to submit a P&R dossier in line with the provisions of the AIFA Guideline to the submission of applications published on the website of the Agency. The following document is an extract from the AIFA Guideline concerning the compilation of Section E of the P&R dossier and the related Appendix 2.

Pricing and reimbursement >

Negotiation and reimbursement>

Economic evaluations >

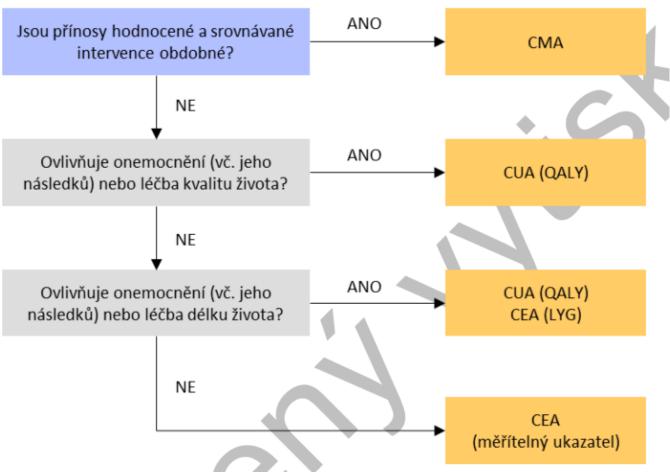
Technical and scientific reports>

Economic Evaluations guidelines>

Dossier P&R con analisi farmacoeconomiche	Tipologia di analisi farmacoeconomiche nei dossier P&R			Totale BIA	Totale CEA	Totale Dossier P&R	
Tipologie negoziali	BIA	CEA	CEA + BIA	Altro			
01 - Farmaci orfani per malattie rare 100 gg	15	4	7	2	22	11	28
02 - Nuove entità chimiche	33	4	19	0	52	23	56
04 - Estensione delle indicazioni terapeutiche/posologia	20	13	19	5	39	32	57
05 - Confezioni in sostituzione o nuove, per numero di unità posologiche o per forma farmaceutica o device	1	0	2	0	3	2	3
06 - Modifica del dosaggio unitario	2	1	0	0	2	1	3
07 - Variazioni del regime di rimborsabilità	1	0	1	0	2	1	2
09 - Rinegoziazione prezzo e/o condizioni	0	0	0	1	0	0	1
11 - Associazione di principi attivi noti	15	0	1	0	16	1	16
Totale	87	22	49	8	136	71	166

Source: Le valutazioni economiche sottomesse ad AIFA nei dossier di richiesta della rimborsabilità e del prezzo

Domů Projekty a publikace Master's Degree Spolupráce Lidé Kontakt Newsletter MUNI I-DAYS 2025


쉾 > Novinky > Nová éra ekonomie zdravotnictví v České republice: ohlédnutí za rokem 2024

Nová éra ekonomie zdravotnictví v České republice: ohlédnutí za rokem 2024

Rok 2024 byl pro ekonomii zdravotnictví v České republice mimořádně úspěšný. V krátkém ohlédnutí za tímto rokem se podívejme, co se nám v Institutu pro zdravotní ekonomii, politiku a inovace (HEPII) na Masarykově univerzitě podařilo.

2024 has been an enormously successful year for health economics in the Czech Republic. In a brief review of the year, let's see what we have accomplished at the Health Economics, Policy, and Innovation Institute (HEPII) at Masaryk University.

Obrázek 2 Rozhodovací strom výběru typu analýzy a parametru přínosu

Source: file-46-659e5bf651091.pdf

ABOUT GET INVOLVED

MEMBERSHIP

MANAGE PROFILE

Q

JOIN/RENEW

HEORORESOURGES of WISTRATEGIC INITIATIVES

EVENTS EDUCATION

PUBLICATIONS

MEMBER GROUPS

pmc.ncbi.nlm.nih.gov

HOME / HEOR RESOURCES

Good Practices Reports & More

These Reports set international standards for health economics and outcomes research and its use in healthcare decision making.

HEOR Explained

Top 10 HEOR Trends

HEOR by Topic

▼ Good Practices Reports & More

ISPOR Good Practices Reports are highly cited, expert consensus guidance recommendations that set international standards for HEOR and its use in healthcare decision making. Other ISPOR Reports provide guidance on important areas such as HTA, health policy, Al and real world evidence. In addition, there are terms and definitions reports and systematic literature reviews on a number of topics. All ISPOR Reports are made freely available as part of the Society's mission.

ISPOR - Good Practices Reports & More

• Increasing attention to the work of Michael E. Porter developed at Harvard more than ten years ago [Porter 2009; Porter 2010; Kaplan & Porter 2011; Porter & Lee 2013]

$$v = \frac{o}{c}$$

- Value-Based Health Care (VBHC) model that aims to improve health outcomes per monetary unit spent
- Reducing costs c while maintaining the same results o or improving results while keeping costs constant. Both scenarios lead to an increase in value.
 - \Rightarrow Requires rigorous measurement of v value

- Requires the production of accurate cost information over the course of the cycle of care/episodes of care (hospital cost accounting systems designed more for billing)
- Requires the adaptation of health information systems
- Literature review by Reitblat et al. 2021: only one study (of 22 articles) estimates costs for all patients
- Alves et al. 2018 literature review of economic analyses in cancer using the TDABC (N=27 studies (U.S. and Belgium (n=6 each), Canada N=3))

Alves RJV, Etges APBDS, Neto GB, Polanczyk CA. Activity-Based Costing and Time-Driven Activity-Based Costing for Assessing the Costs of Cancer Prevention, Diagnosis, and Treatment: A Systematic Review of the Literature. Value Health Reg Issues. 2018 Dec;17:142-147. doi: 10.1016/j.vhri.2018.06.001. Epub 2018 Aug 24. PMID: 30149318. Reitblat C, Bain PA, Porter ME, Bernstein DN, Feeley TW, Graefen M, Iyer S, Resnick MJ, Stimson CJ, Trinh QD, Gershman B. Value-Based Healthcare in Urology: A Collaborative Review. Eur Urol. 2021 May;79(5):571-585. doi: 10.1016/j.eururo.2020.12.008. Epub 2021 Jan 4. PMID: 33413970.

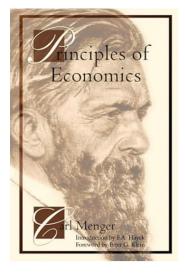
- Is it possible to calculate a ratio? Problem: we don't have to deal with a single result [Lindgren P & Althin R 2021]
- ⇒ Lindgren P & Althin propose to express the value equation using a vector notation (o would then correspond to a vector of patient relevant outcomes)
- ⇒ Poses the question of how value-based health care is positioned in relation to microeconomic tools (producer theory, etc.)

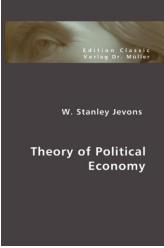
Lindgren P, Althin R. Something borrowed, something new: measuring hospital performance in the context of value based health care. Eur J Health Econ. 2021 Aug;22(6):851-854. doi: 10.1007/s10198-020-01209-5. PMID: 32548650.

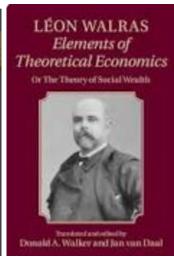
- ⇒ Also raises the question of the positioning of value-based health care in relation to economic evaluation such as Cost-Effectiveness Analysis (CEA)
- Value-based health care still under construction, "in infancy" [Walraven et al. 2021]
- CEA: a well-documented and widely accepted field with a defining role in recent decades

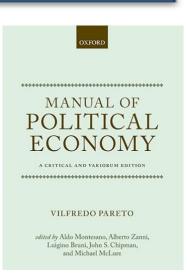
Drummond, M., Sculpher, M.J., Claxton, K., Stoddart, G.L., Torrance, G.W., Askews & Holts Library Services, 2015. Methods for the economic evaluation of health care programmes. Oxford university press. Walraven J, Jacobs MS, Uyl-de-Groop CA. Leveraging the similarities between cost-effectiveness Analysis and Value-Based healthcare. Value Health 2021. Jul;24(7):1038-1044.

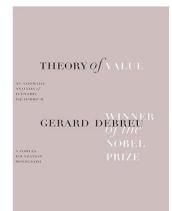
	ACE (Cost- effectiveness Analysis)	Soins de santé fondés sur la valeur (Value-Based Health Care)
Formulas	$\frac{\Delta C}{\Delta E}$	$\frac{\textit{Outcomes}}{\textit{Total costs}}$
Perspectives	Health system, collective, societal	Patients
Time horizon	Whole life	Cycle / episodes of care
Outcomes	QALY	Multidimensional approaches
Methods	CEA based on experimental or quasi-experimental studies	Time Driven Activity Based Costing
	Modeling (Markov model, discrete event simulations)	Process Approach

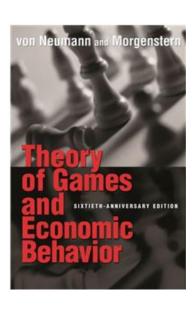

Tsevat J, Moriates C. Value-Based Health Care Meets Cost-Effectiveness Analysis. Ann Intern Med. 2018 Sep 4;169(5):329-332. doi: 10.7326/M18-0342. Epub 2018 Aug 7. PMID: 30083766.


Schedule


- A. Objectives and context
- B. Taxonomy of health care evaluations and international guidelines
- c. Effectiveness and costs assessment
- D. Applications to advanced radiotherapy


Utility, Preference, Value set




ECONOMIC THEORY IN THE MATHEMATICAL MODE

Nobel Memorial lecture, 8 December, 1983

by

GERARD DEBREU

Department of Economics, University of California, Berkeley, CA 94720

Utility, Preference, Value set

► Health Serv Res. 1972 Summer:7(2):118-133.

A Utility Maximization Model for Evaluation of Health Care Programs

George W Torrance 1, Warren H Thomas 1, David L Sackett 1

Socio-Economic Planning Sciences

Volume 10, Issue 3, 1976, Pages 129-136

Social preferences for health states: An empirical evaluation of three measurement techniques *

George W. Torrance

Applications of utility theory in the economic evaluation of health care

Toepassingen van nutstheorie in de economische evaluatie van gezondheidszorg

Proefschrift

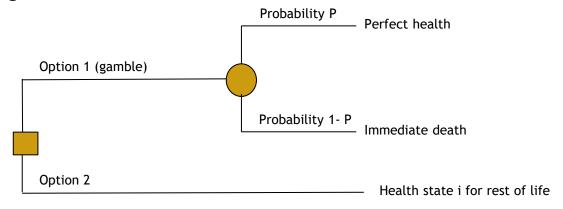
Ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus prof. dr. P.W.C. Akkermans M.A. en volgens het besluit van het college voor promoties.

De openbare verdediging zal plaatsvinden op donderdag 18 januari 1996 om 16.00 uur

door

Han Bleichrodt geboren te Almelo

Comparative Study > J Health Econ. 1997 Apr;16(2):155-75. doi: 10.1016/s0167-6296(96)00509-7.


Standard gamble, time trade-off and rating scale: experimental results on the ranking properties of **QALYs**

H Bleichrodt 1, M Johannesson

Source: Social preferences for health states: An empirical evaluation of three measurement techniques - ScienceDirect https://www.sciencedirect.com/science/article/abs/pii/0038012176900367 A utility maximization model for evaluation of health care programs - PubMed https://repub.eur.nl/pub/22305/960118_Bleichrodt,%20Han.pdf960118_Bleichrodt, Han.pdf

Utility, Preference, Value set

e.g. the Standard gamble method

- Standard gamble follows the axioms of von Neumann & Morgenstern's expected utility theory.
- Involves asking a person to choose between a risky option (the person either lives in perfect health for the rest of life or dies immediately) and a certain option (where the person remains in Health State i for the rest of live).
- The probability of perfect health is varied until the person is indifferent between the gamble and the certain health state.

> Pharmacoeconomics. 1998 Apr;13(4):421-33. doi: 10.2165/00019053-199813040-00005.

Valuation of EuroQOL (EQ-5D) health states in an adult US sample

```
J A Johnson <sup>1</sup>, S J Coons, A Ergo, G Szava-Kovats

Affiliations + expand
```

PMID: 10178666 DOI: 10.2165/00019053-199813040-00005

Health Econ. 2018 Jan;27(1):7-22. doi: 10.1002/hec.3564. Epub 2017 Aug 22.

Valuing health-related quality of life: An EQ-5D-5L value set for England

```
Nancy J Devlin <sup>1 | 2</sup>, Koonal K Shah <sup>1</sup>, Yan Feng <sup>1</sup>, Brendan Mulhern <sup>2 | 3</sup>, Ben van Hout <sup>2</sup>

Affiliations + expand

PMID: 28833869 PMCID: PMC6680214 DOI: 10.1002/hec.3564
```

> Pharmacoeconomics. 2023 Nov;41(11):1515-1524. doi: 10.1007/s40273-023-01280-9. Epub 2023 Jun 21.

EQ-5D-5L Value Set for Slovenia

Valentina Prevolnik Rupel ^{1 2}, Marko Ogorevc ³

Affiliations + expand

PMID: 37341959 PMCID: PMC10570207 DOI: 10.1007/s40273-023-01280-9

https://pubmed.ncbi.nlm.nih.gov/31912325/ https://pubmed.ncbi.nlm.nih.gov/28833869/ EQ-5D-5L Value Set for Slovenia - PubMed

Under each heading, please tick the ONE box that best des	cribes your healt	h TODAY
MOBILITY		
I have no problems in walking about		
I have slight problems in walking about		
I have moderate problems in walking about		
I have severe problems in walking about		
I am unable to walk about		
SELF-CARE	9.000	
I have no problems washing or dressing myself		
I have slight problems washing or dressing myself		
I have moderate problems washing or dressing myself		
I have severe problems washing or dressing myself		
I am unable to wash or dress myself		
USUAL ACTIVITIES (e.g. work, study, housework, family or leisure activities)		
I have no problems doing my usual activities		
I have slight problems doing my usual activities		
I have moderate problems doing my usual activities		
I have severe problems doing my usual activities		
I am unable to do my usual activities		
PAIN / DISCOMFORT		
I have no pain or discomfort		
I have slight pain or discomfort		
I have moderate pain or discomfort		
I have severe pain or discomfort		
I have extreme pain or discomfort		
ANXIETY / DEPRESSION		
I am not anxious or depressed		Source: Devlin NJ, Shah KK, Feng Y, Mulhern B, van Hout B. Valuing health-related
I am slightly anxious or depressed		quality of life: An EQ-5D-5L value set for England. Health Econ. 2018 Jan;27(1):7-22. doi: 10.1002/hec.3564. Epub 2017 Aug 22. PMID: 28833869; PMCID:
I am moderately anxious or depressed		PMC6680214. https://pmc.ncbi.nlm.nih.gov/articles/PMC6680214/pdf/HEC-27-
I am severely anxious or depressed		7.pdfValuing health-related quality of life: An EQ-5D-5L value set for England
I am extremely anxious or depressed		48

TABLE 2 An EQ-5D-5L value set for England

	Central estimate ^a	Value for health state	e 23245	
Constant	1.000	1.000		
Mobility			Under each heading, please tick the ONE box that best desc	ribes your health TODAY
Slight	0.058	0.058	MOBILITY	
Moderate	0.076		I have no problems in walking about	
Severe	0.207		I have slight problems in walking about I have moderate problems in walking about	<u> </u>
Unable	0.274		I have severe problems in walking about	ă
Self-care			I am unable to walk about	
Slight	0.050		SELF-CARE	
Moderate	0.080	0.080	I have no problems washing or dressing myself	
Severe	0.164		I have slight problems washing or dressing myself I have moderate problems washing or dressing myself	
Unable	0.203		I have severe problems washing or dressing myself	_
Usual activities			I am unable to wash or dress myself	
Slight	0.050	0.050	USUAL ACTIVITIES (e.g. work, study, housework,	
Moderate	0.063		family or leisure activities) I have no problems doing my usual activities	
Severe	0.162		I have slight problems doing my usual activities	
Unable	0.184		I have moderate problems doing my usual activities	
Pain/discomfort			I have severe problems doing my usual activities	
Slight	0.063		I am unable to do my usual activities	ш
Moderate	0.084		PAIN / DISCOMFORT	
Severe	0.276	0.276	I have no pain or discomfort I have slight pain or discomfort	ä
Extreme	0.335		I have moderate pain or discomfort	
Anxiety/depression			I have severe pain or discomfort	
Slight	0.078		I have extreme pain or discomfort	
Moderate	0.104		ANXIETY / DEPRESSION	
Severe	0.285		I am not anxious or depressed I am slightly anxious or depressed	
Extreme	0.289	0.289	I am moderately anxious or depressed	
The value for health state 23245	1 - (0.058 + 0.080 + 0.050 + 0.276 + 0.289)	= 0.247	I am severely anxious or depressed I am extremely anxious or depressed	

CODA results from final model available from the authors upon request.

Source: Devlin NJ, Shah KK, Feng Y, Mulhern B, van Hout B. Valuing health-related quality of life: An EQ-5D-5L value set for England. Health Econ. 2018 Jan;27(1):7-22. doi: 10.1002/hec.3564. Epub 2017 Aug 22. PMID: 28833869; PMCID: PMC6680214. https://pmc.ncbi.nlm.nih.gov/articles/PMC6680214/pdf/HEC-27-7.pdfValuing health-related quality of life: An EQ-5D-5L value set for England

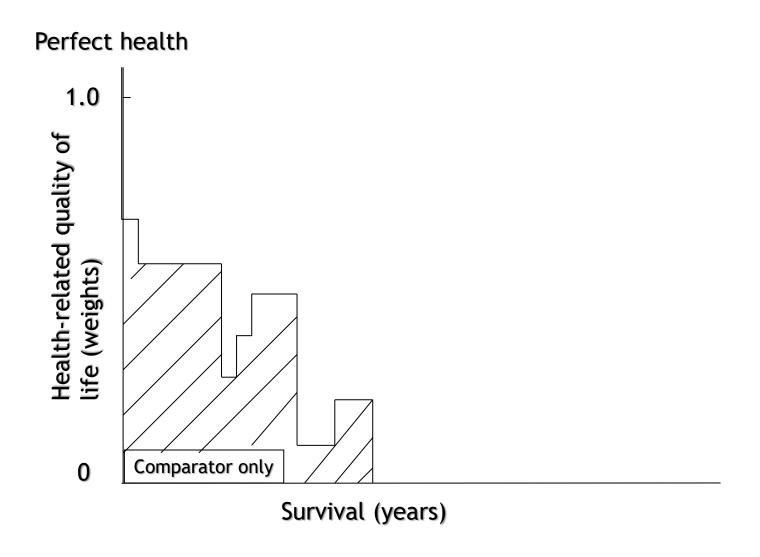
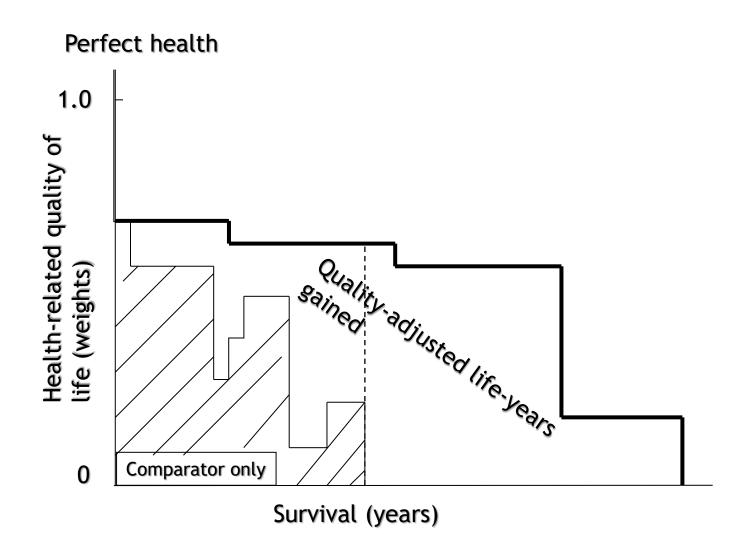

^aNote that the coefficients reported here are the mean coefficients from the Bayesian regressions.

Table 1. Evidence table summarizing the methodological elements of EQ-5D-5L for the retained studies (n = 31).


Country	Publication year		General	study ch	aracteri	stics			F	Preference elicitat and mod	•			Value set
		Sar	nple		Data c	ollection			TT	0	DCI			
		Sampling	Analyzed ^a	Training	Mode	Protocol version	QC ^b	Design	C/R	Model ^c	Design	C/R	Model ^c	Final model
EQ-VT Version 2														
Uganda ²⁶	2022	Q	492	Υ	CAPI	EQ-VT Lite	Υ	сТТО	20	Tobit	_	_	_	Tobit
Denmark ³⁷	2021	_	1,014	Υ	CAPI	EQ-VT 2.1	Υ	сТТО	10	Tobit	DCE	7	CLM	Hybrid
Egypt ²⁸	2021	Q	974	Υ	CAPI	EQ-VT 2.1	Υ	сТТО	10	Heteroskedastic	DCE	7	CLM	Heteroskedastic
Mexico ²⁷	2021	St	1,000	Υ	CAPI	EQ-VT 2.0	Υ	сТТО	10	Heteroskedastic	_	_	_	Heteroskedastic
France ⁹	2020	Q	1,048	Υ	CAPI	EQ-VT 2.0	Υ	сТТО	10	Tobit	DCE	7	CLM	Hybrid
Hungary ⁴⁸	2020	Q	1,000	_	CAPI	EQ-VT 2.1	Υ	сТТО	10	Tobit	DCE	7	_	Tobit
Peru ²⁹	2020	St	1,000	Υ	CAPI	EQ-VT 2.1	Υ	cTTO	11	Tobit	DCE	34	ZBT	Tobit
Vietnam ⁴³	2020	St	1,200	Υ	CAPI	EQ-VT 2.1	Υ	cTTO	10	Tobit	DCE	7	LM	Hybrid
Ethiopia ⁵¹	2019	St	1,048	Υ	CAPI	EQ-PVT 2.1	Υ	cTTO	10	OLS	DCE	7	CLM	Hybrid
Poland ³⁵	2019	Q	1,252	Υ	CAPI	EQ-VT 2.0	Υ	сТТО	10	_	DCE	7	_	Hybrid
Portugal ³⁴	2019	St	1,451	Υ	CAPI	EQ-VT 2.0	Υ	сТТО	10	Tobit	DCE	7	CLM	Hybrid
US ⁴⁵	2019	Q	1,102	Υ	CAPI	EQ-VT 2.0	Υ	сТТО	10	Tobit	DCE	7	MLM	Tobit
Germany ⁴¹	2018	Q	1,158	Υ	CAPI	EQ-VT 2.0	Υ	сТТО	10	Tobit	DCE	13	CLM	Hybrid
Ireland ³⁶	2018	St	1,160	Y	CAPI	EQ-VT 2.0	Υ	сТТО	10	_	DCE	7	_	Hybrid
Malaysia ⁴⁹	2018	St	1,125	Y	CAPI	EQ-VT 2.0	Y	сТТО	10	Mixed effect	DCE	7	CLM	Hybrid
Taiwan ⁴⁰	2018	St	1,000	Y	CAPI	EQ-VT 2.0	Y	сТТО	10	Tobit	DCE	7	CLM	Hybrid
Hong Kong ⁵²	2017	_	1,014	Y	CAPI	EQ-VT 2.0	Y	сТТО	10	Tobit	DCE	7	CLM	Hybrid
Indonesia ⁴⁶	2017	St	1,054	Ϋ́	CAPI	EQ-VT 2.0	Ý	сТТО	10	Tobit	DCE	7	CLM	Hybrid
EQ-VT Version 1	2017	50	1,054		Citi	LQ 11 2.0		ciro		Tobic	DCL	•	CLIII	riyona
Spain ⁴⁷	2018	St	973	Υ	CAPI	EQ-VT 1.0	Re	сТТО	10	Linear	DCE	7	CLM	Hybrid
Thailand ⁴⁴	2018	St	1,205	Ý	CAPI	EQ-VT 1.1	Y	сТТО	10	Multilevel	DCE	7	CLM	Hybrid
China ⁴²	2017	Q	1,271	Ý	CAPI	EQ-VT 1.0	_	сТТО	10	Nonlinear	DCE	_	_	Non-linear
England ³³	2017	R	912	Ý	CAPI	EQ-VT 1.0	Re	сТТО	10	_	DCE	7	_	Hybrid
Canada ⁵³	2017	Q	1,073		CAPI	EQ-VT 1.0	_	cП0+tП0	10	Linear	_	_′		Linear
Japan ¹⁵	2016	St	1,026	Υ	CAPI	EQ-VT 1.0	Υ	сПО ТПО	10	Linear mixed	DCE	7	CLM	Linear mixed
Korea ³⁸	2016	St	1,020	Ý	CAPI	EQ-VT 1.1	Ý	сТТО	10	Linear mixed	DCE	7	CLM	Linear mixed
Netherlands ¹⁶	2016	St	992	Ý	CAPI	EQ-VT 1.1	Re	сПО	10	Tobit	DCE	7	CLM	Tobit
Uruguay ³⁰	2016	St	794	Ϋ́	CAPI	EQ-VT 1.0 EQ-VT 1.1	Y	сПО	10	Robust	DCE	7	CLIVI	Robust
Others	2010	31	/ 54	,	CAFI	EQ-VI I.I	-	CITO	10	nobust	DCE	,		nobust
New Zealand ⁵⁰	2020	Re	2,468		SAOS	_	Υ				DCE (PAPRIKA)			
Sweden ^{31d}	2020	R R	25,867		SAPS	_		πο	1	OLS	DCE (FAFRIKA)	_	_	OLS
US ³²	2020			_	SAPS			110	- 1	ULS	DCE	20	ZBT	ZBT
		Q	8,222	_				_	_	_				GLM
Germany ^{39d}	2017	R	8,114	_	SAPS	N	_	_	_	_	_	_	_	GLM

Abbreviations. –, not used/unspecified/unclear; CAPI, face-to-face computer-assisted personal interviewing; CLM, conditional logit model; C/R represents choice/ respondent; cTTO, composite time trade-off; DCE, discrete choice experiment; EB, experience based; EQ-PVT, EuroQol portable valuation technology; EQ-VT, EuroQol valuation technology; GLM, generalized linear model; HS, hypothetical state; LM, logit model; MLM, mixed logit model; OLS, ordinary least square; Q,

How are Quality Adjusted Life-Years calculated?

How are Quality Adjusted Life-Years calculated?

11 11	
Health status	Utility scores
11111	1-0-0-0-0 = 1 (perfect health)
11112	1-0-0-0-0.02046 =0.97954
23332	1-0.03759-0.050781-0.03979-0.04704-0.02046= 0.80434

Table 3 Cumulative decrements of utilities per dimension

_
MOBILITY
I have no problems in walking about
I have slight problems in walking about
I have moderate problems in walking about
I have severe problems in walking about
I am unable to walk about
SELF-CARE
I have no problems washing or dressing myself
I have slight problems washing or dressing myself
I have moderate problems washing or dressing myself
I have severe problems washing or dressing myself
I am unable to wash or dress myself
USUAL ACTIVITIES (e.g. work, study, housework, family or leisure activities)
I have no problems doing my usual activities
I have slight problems doing my usual activities
I have moderate problems doing my usual activities
I have severe problems doing my usual activities
I am unable to do my usual activities
PAIN / DISCOMFORT
I have no pain or discomfort
I have slight pain or discomfort
I have moderate pain or discomfort
I have severe pain or discomfort

I have extreme pain or discomfort	
ANXIETY / DEPRESSION	
I am not anxious or depressed	
I am slightly anxious or depressed	

I am moderately anxious or depressed I am severely anxious or depressed

I am severely anxious or depressed I am extremely anxious or depressed

	MO	SC	UA	PD	AD
Unweighted	l model				
Level 2	0.0338811	0.0374599	0.0310561	0.0231809	0.0192951
Level 3	0.0433628	0.0494621	0.0367977	0.0487449	0.0484484
Level 4	0.1778412	0.1715431	0.1558802	0.2660137	0.2027724
Level 5	0.318512	0.2580992	0.2380036	0.4455017	0.261614
Weighted m	odel				
Level 2	0.03759	0.03656	0.03313	0.02198	0.02046
Level 3	0.04774	0.050781	0.03979	0.04704	0.04683
Level 4	0.17949	0.172251	0.15689	0.26374	0.20005
Level 5	0.32509	0.258331	0.24005	0.44399	0.25803

PD pain and discomfort, MO mobility, AD anxiety/depression, SC self-care, UA usual activities

Suppose a 3-year clinical trial in which utility scores are as follow:

Mois	Scores patient i
0	0.873
3	0.921
6	0.669
9	0.6183
12	0.491
15	0.499
24	0.535
36	0.206

Calculate undiscounted QALYs

Calculate the QALYs discounted at the beginning of the period (discount rate r= 2.5%)

$$\sum_{t} \frac{U_t}{(1+r)^t}$$

	Score	undiscounted	QALYs	
Months	patient i	QALYs	discounted	
0	0.873			
3	0.921	0.22425		0.22425 = (0.873 + 0.921)*0,5*(3/12)
6	0.669	0.19875		
9	0.6183	0.16091		
12	0.491	0.13866		
QALY (year 1)		0.72258	0.70495	0.70495= 0.72258/1.025
15	0.499	0.12375		
24	0.535	0.38775		0.38775=(0.499+0.535)*0.5*(9/12)
QALY (year 2)		0.51150	0.48685	
•	0.004	0.27050		
36	0.206	0.37050		0.337050=(0.535+0.206)*0.5*(12/12)
QALY (year 3)		0.37050	0.34405	0.34405= 0.37050/(1.025) ²
QALYs for		1 / 0 / 50	1 52525	4 = 2 = 2
patient i		1.60458	1.53585	1.53585= 1.60458/(1.025) ³

Survival	Health strategies	Utility score
8 years	dialysis at home	0.65

Question: a diagram and a number of QALYs when a patient gets an additional lifetime of 8 years through a dialysis at home (without discounting and with discounting)

```
5.2 QALY without discounting (8*0.65)
4.66 QALY with discounting (2.5%)
```

 $4.66 = (0.65/1.025) + (0.65/1.025^{2}) + (0.65/1.025^{3}) + (0.65/1.025^{4}) + (0.65/1.025^{5}) + (0.65/1.025^{8}) + (0.65/1.025^{8})$

How to assess the costs?

Depending upon:

- The type of health care programme(s) considered in the study. Relevant alternatives should be not omitted!
- The viewpoint of the study.

A caregiver's point of view?

A payer's point of view?

The patient's point of view?

The societal point of view?

- The duration of the cost tracking. A relevant time period should be chosen.

Further questions about costs

Do not invest too much time and effort for small costs (justify the elimination based for example on previous empirical work).

Perform sensitivity analysis.

Adjust costs for differential timing (formula to account for time preference, with r the real discount rate).

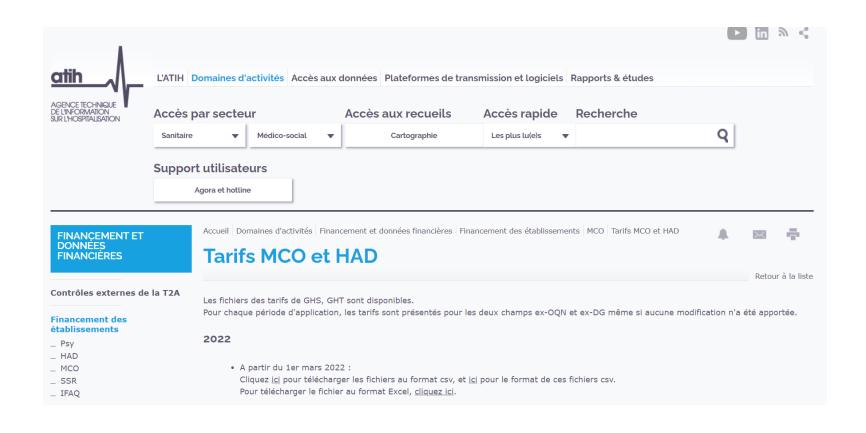
$$\sum_{t} \frac{C_t}{(1+r)^t}$$

Review of Diagnosis-Related Group-Based Financing of Hospital Care

Health Services Research and Managerial Epidemiology Volume 3: 1-8 © The Author(s) 2016 Reprints and permission: sagepub.com/journals/Permissions.nav DOI: 10.1177/2333392816647892 hme.sagepub.com

\$SAGE

Natasa Mihailovic¹, Sanja Kocic^{1,2}, and Mihajlo Jakovljevic³


Abstract

Since the 1990s, diagnosis-related group (DRG)-based payment systems were gradually introduced in many countries. The main design characteristics of a DRG-based payment system are an exhaustive patient case classification system (ie, the system of diagnosis-related groupings) and the payment formula, which is based on the base rate multiplied by a relative cost weight specific for each DRG. Cases within the same DRG code group are expected to undergo similar clinical evolution. Consecutively, they should incur the costs of diagnostics and treatment within a predefined scale. Such predictability was proven in a number of cost-of-illness studies conducted on major prosperity diseases alongside clinical trials on efficiency. This was the case with risky pregnancies, chronic obstructive pulmonary disease, diabetes, depression, alcohol addiction, hepatitis, and cancer. This article presents experience of introduced DRG-based payments in countries of western and eastern Europe, Scandinavia, United States, Canada, and Australia. This article presents the results of few selected reviews and systematic reviews of the following evidence: published reports on health system reforms by World Health Organization, World Bank, Organization for Economic Co-operation and Development, Canadian Institute for Health Information, Canadian Health Services Research Foundation, and Centre for Health Economics University of York. Diverse payment systems have different strengths and weaknesses in relation to the various objectives. The advantages of the DRG payment system are reflected in the increased efficiency and transparency and reduced average length of stay. The disadvantage of DRG is creating financial incentives toward earlier hospital discharges. Occasionally, such polices are not in full accordance with the clinical benefit priorities.

Keywords

DRG, payments systems, efficiency, managed care, hospital health services

Source: https://www.researchgate.net/publication/303029934_Review_of_Diagnosis-Related_Group-Based Financing of Hospital Care

https://atih.sante.fr/tarifs-mco-et-had

https://www.scansante.fr/applications/enc-mco

VISUALISER LES RÉSULTATS

TÉLÉCHARGER LE RÉFÉRENTIEL (FICHIER EXCEL ET GUIDE)

DONNEES DE COUTS DETAILLEES

Données de coûts 2022 par GHM Coûts décomposés par grands postes

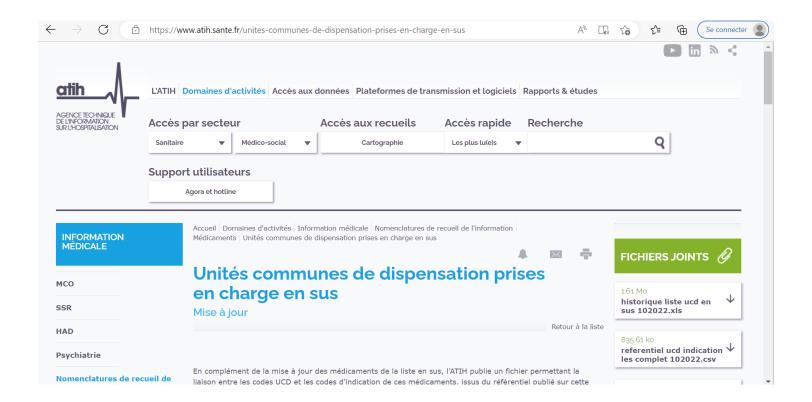
Coûts décomposés détaillés

Caractéristiques statistiques du coût moyen du GHM et Références nationales

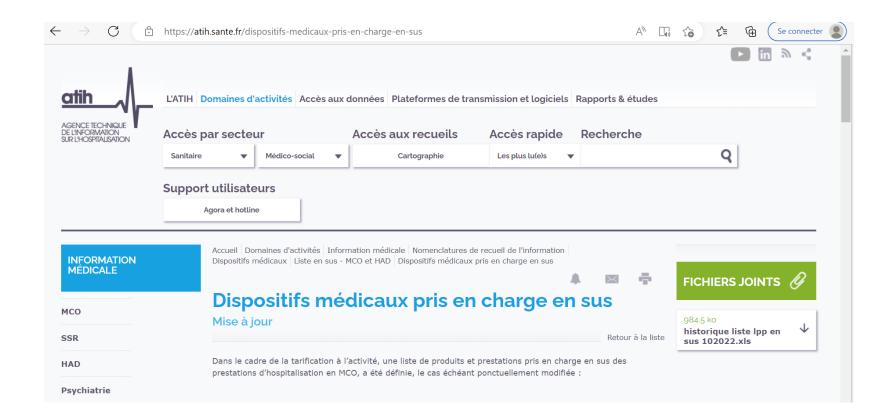
Données de coûts 2022 par GHS Coûts décomposés détaillés

Caractéristiques statistiques du coût moyen du GHS et Références nationales

Données 2022 sur les UO


Consommation d'UO par GHM

Consommation d'UO par GHS


CMI ▼	sous CN [▼]	raciı *	GHM ∨202 [▼]	Libellé GHM	Coût modifié (*) ▽		Coût complet hors structur ▼	Dépenses cliniques Y
17		17K04	17K041	Autres irradiations, niveau 1		829	4084	458
17	17K	17K04	17K042	Autres irradiations, niveau 2		134	7006	3516
17	17K	17K04	17K043	Autres irradiations, niveau 3		99	10766	5877
17	17K	17K04	17K044	Autres irradiations, niveau 4		31	20841	11652
17	17K	17K04	TOTAL	Autres irradiations		1093	4809	1065
17	17K	17K09	17K091	Irradiations internes, niveau 1		2203	9369	906
17	17K	17K09	17K092	Irradiations internes, niveau 2	*	30	10317	2915

					Cout	Nombre de	Cout complet	
					modifié	séjours ENC	hors	Dépenses
CMI T	sous CN T	raci: *	GHM v202 *	Libellé GHM	(*)	2022	structur *	cliniques
28	28Z	28Z19	28Z19Z	Préparations à une irradiation externe par RCMI ou techniques spéciales		21385	1241	0
28	28Z	28Z19	TOTAL	Préparations à une irradiation externe par RCMI ou techniques spéciales		21385	1241	0
28	28Z	28Z20	28Z20Z	Préparations à une irradiation externe avec dosimétrie tridimensionnelle avec HDV		5104	925	0
28	28Z	28Z20	TOTAL	Préparations à une irradiation externe avec dosimétrie tridimensionnelle avec HDV		5104	925	0
28	28Z	28Z21	28Z21Z	Préparations à une irradiation externe avec dosimétrie tridimensionnelle sans HDV		66	732	0
28	28Z	28Z21	TOTAL	Préparations à une irradiation externe avec dosimétrie tridimensionnelle sans HDV		66	732	0
28	28Z	28Z22	28Z2ZZ	Autres préparations à une irradiation externe		1192	168	1
28	28Z	28Z22	TOTAL	Autres préparations à une irradiation externe		1192	168	1
28	28Z	28Z23	28Z23Z	Techniques complexes d'irradiation externe avec repositionnement, en séances		83831	234	0
28	28Z	28Z23	TOTAL	Techniques complexes d'irradiation externe avec repositionnement, en séances		83831	234	0
28	28Z	28Z24	28Z24Z	Techniques complexes d'irradiation externe sans repositionnement, en séances		771	187	0

 Specific prescription rules have been developed for high cost drugs...

...and medical devices

https://atih.sante.fr/dispositifs-medicaux-pris-en-charge-en-sus

The incremental cost-effectiveness ratio (ICER)

$$\frac{Cost_{A} - Cost_{B}}{Effect_{A} - Effect_{B}} = \frac{\Delta C}{\Delta E}$$

The cost-effectiveness plane

The nightmare

New programme less effective and more costly

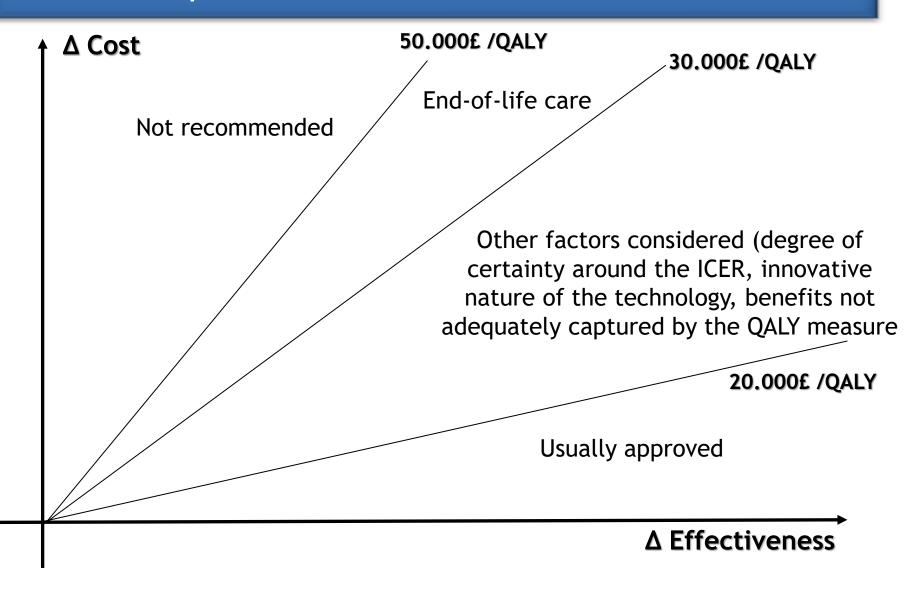
∆ Cost

The dilemma

New programme more effective and more costly

less to pay

Δ Effect


The dilemma

New programme less effective and less costly

The dream

New programme more effective and less costly

The cost per QALY: the international reference

Exemple 6

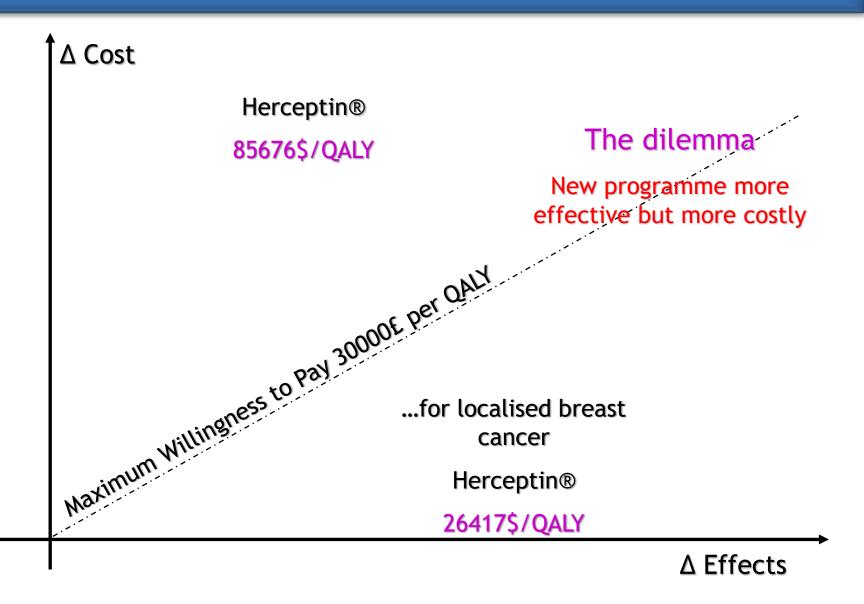
New strategy	Average cost	£30,520
	Average QALYs	1.56
Standard	Average cost	
strategy		£22,858
	Average	
	QALYs	1.44

1. Calculate the ICER
$$\frac{Cost_A - Cost_B}{Effect_A - Effect_B} = \frac{\Delta C}{\Delta E}$$
 £63,850

2. Would the new strategy benefit from the NHS reimbursement in England No £56,539 (>£30 000)

	Incremental effectiveness (innovation versus standard)			
Incremental		More	Same	Less
cost	More	7	4	2
(innovation versus	Same	3	9	5
standard)	Less	1	6	8

- Strong dominance for decision? 1 (accept) and 2 (reject)
- Weak dominance for decision? 3 (accept) 4 (reject) 5 (reject) 6 (accept)
- Non-dominance? 7? 8?


Trastuzumab (Herceptin®) in breast cancer

	Localized breast cancers	Metastatic breast cancers
Total cost without trastuzumab	28 749\$	40 000\$
Total cost with trastuzumab	73 672\$	87 728\$
QALY without trastuzumab	10.08	0.7
QALY with trastuzumab	11.78	1.26
Δ Cost Δ QALY	44 923\$ 1.70	47 728\$ 0.56
Extra cost/QALY ICER	26 417\$	85 676\$

Source: Garrison, Louis P.; Veenstra, David L. The Economic Value of Innovative Treatments over the Product Life Cycle: The Case of Targeted Trastuzumab Therapy for Breast

Cancer. Value in Health 2009, 12(8):1118-1123.

Back to the cost-effectiveness plane

A theory on ICER pricing and optimal levels of costeffectiveness thresholds: a bargaining approach

Mikel Berdud ¹, Jimena Ferraro ² ³, Adrian Towse ¹

Affiliations + expand

PMID: 37693236 PMCID: PMC10484610 DOI: 10.3389/frhs.2023.1055471

ACTIONS

CETs used in HTA decision-making regulate the prices for new health technologies by setting the threshold for the maximum acceptable price. Pricing new medicines using this ICER-CET mechanism is part of a family of value-based pricing mechanisms (8, 9). We refer to this mechanism as ICER pricing where the developer prices the new health technology at the maximum price the CET

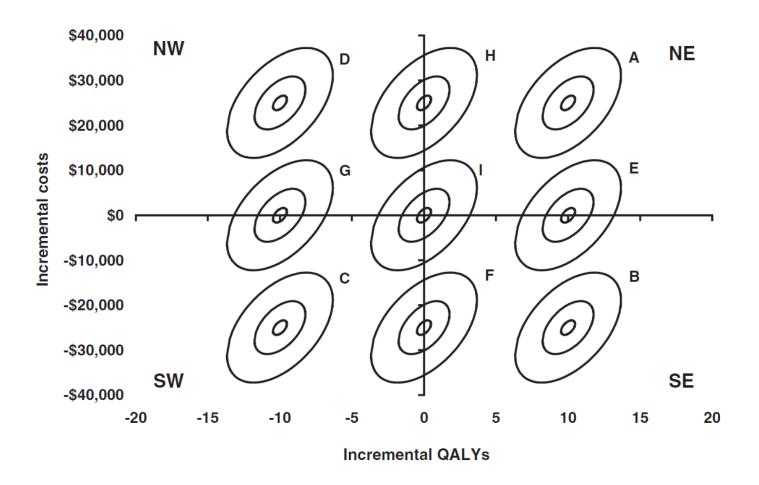
Berdud M, Ferraro J, Towse A. A theory on ICER pricing and optimal levels of cost-effectiveness thresholds: a bargaining approach. Front Health Serv. 2023 Aug 24;3:1055471. doi: 10.3389/frhs.2023.1055471. PMID: 37693236; PMCID: PMC10484610. https://pubmed.ncbi.nlm.nih.gov/37693236/

Pricing mechanisms

Cost per QALY (England, Canada, Sweden)

Determining the efficiency path to universal health coverage: cost-effectiveness thresholds for 174 countries based on growth in life expectancy and health expenditures

Andres Pichon-Riviere, Michael Drummond, Alfredo Palacios, Sebastián Garcia-Marti, Federico Augustovski


Budget driven (Italy, Spain)

Benefit assessment (France, Germany)

International reference pricing (Switzerland)

Market pricing (USA)

Source: Pichon-Riviere A, Drummond M, Palacios A, Garcia-Marti S, Augustovski F. Determining the efficiency path to universal health coverage: cost-effectiveness thresholds for 174 countries based on growth in life expectancy and health expenditures. Lancet Glob Health. 2023 Jun;11(6):e833-e842. doi: 10.1016/S2214-109X(23)00162-6. PMID: 37202020.

Fenwick, E. and O'Brien, B.J. and Briggs, A. (2004) Cost-effectiveness acceptability curves - facts, fallacies and frequently asked questions. *Health Economics* 13(5):pp. 405-415.

Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) statement: updated reporting guidance for health economic evaluations

Don Husereau, Michael Drummond, Federico Augustovski, Esther de Bekker-Grob, Andrew H Briggs, Chris Carswell, Lisa Caulley, Nathorn Chaiyakunapruk, Dan Greenberg, Elizabeth Loder, Josephine Mauskopf, C Daniel Mullins, Stavros Petrou, Raoh-Fang Pwu, Sophie Staniszewska

Source: Husereau D, Drummond M, Augustovski F, de Bekker-Grob E, Briggs AH, Carswell C, Caulley L, Chaiyakunapruk N, Greenberg D, Loder E, Mauskopf J, Mullins CD, Petrou S, Pwu RF, Staniszewska S; CHEERS 2022 ISPOR Good Research Practices Task Force. Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) Statement: Updated Reporting Guidance for Health Economic Evaluations. Value Health. 2022 Jan;25(1):3-9. doi: 10.1016/j.jval.2021.11.1351. PMID: 35031096.

Table 1. The CHEERS 2022 checklist.

Section/topic	Item No	Guidance for reporting	Reported in section
Title			
Title	1	Identify the study as an economic evaluation and specify the interventions being compared.	
Abstract			
Abstract	2	Provide a structured summary that highlights context, key methods, results, and alternative analyses.	
Introduction			
Background and objectives	3	Give the context for the study, the study question, and its practical relevance for decision making in policy or practice.	
Methods			
Health economic analysis plan	4	Indicate whether a health economic analysis plan was developed and where available.	
Study population	5	Describe characteristics of the study population (such as age range, demographics, socioeconomic, or clinical characteristics).	
Setting and location	6	Provide relevant contextual information that may influence findings.	
Comparators	7	Describe the interventions or strategies being compared and why chosen.	
Perspective	8	State the perspective(s) adopted by the study and why chosen.	
Time horizon	9	State the time horizon for the study and why appropriate.	
Discount rate	10	Report the discount rate(s) and reason chosen.	
Selection of outcomes	11	Describe what outcomes were used as the measure(s) of benefit(s) and harm(s).	
Measurement of outcomes	12	Describe how outcomes used to capture benefit(s) and harm(s) were measured.	
Valuation of outcomes	13	Describe the population and methods used to measure and value outcomes.	
Measurement and valuation of resources and costs	14	Describe how costs were valued.	_

Schedule

- A. Objectives and context
- B. Taxonomy of health care evaluations and international guidelines
- c. Effectiveness and costs assessment
- D. Applications to advanced radiotherapy

Cost-effectiveness of proton beam therapy vs. conventional radiotherapy for patients with brain tumors in Sweden: results from a non-randomized prospective multicenter study

```
Filipa Sampaio <sup>1</sup>, Ulrica Langegård <sup>2</sup> <sup>3</sup>, Patricio Martínez de Alva <sup>4</sup>, Sergio Flores <sup>4</sup>,
Camilla Nystrand <sup>4</sup>, Per Fransson <sup>5</sup>, Emma Ohlsson-Nevo <sup>6</sup>, Ingrid Kristensen <sup>7</sup> <sup>8</sup>, Katarina Sjövall <sup>9</sup>,
Inna Feldman <sup>4</sup>, Karin Ahlberg <sup>2</sup>

Affiliations + expand

PMID: 39272105 PMCID: PMC11396687 DOI: 10.1186/s12962-024-00577-6
```

Abstract

Background This study assessed the cost-effectiveness of proton beam therapy (PBT) compared to conventional radiotherapy (CRT) for treating patients with brain tumors in Sweden.

Methods Data from a longitudinal non-randomized study performed between 2015 and 2020 was used, and included adult patients with brain tumors, followed during treatment and through a one-year follow-up. Clinical and demographic data were sourced from the longitudinal study and linked to Swedish national registers to get information on healthcare resource use. A cost-utility framework was used to evaluate the cost-effectiveness of PBT vs. CRT. Patients in PBT group (n=310) were matched with patients in CRT group (n=40) on relevant observables using propensity score matching with replacement. Costs were estimated from a healthcare perspective and included costs related to inpatient and specialized outpatient care, and prescribed medications. The health outcome was quality-adjusted life-years (QALYs), derived from the EORTC-QLQ-C30. Generalized linear models (GLM) and two-part models were used to estimate differences in costs and QALYs.

Results PBT yielded higher total costs, 14,639 US\$, than CRT, 13,308 US\$, with a difference of 1,372 US\$ (95% CI, -4,914–7,659) over a 58 weeks' time horizon. Further, PBT resulted in non-significantly lower QALYs, 0.746 compared to CRT, 0.774, with a difference of -0.049 (95% CI, -0.195–0.097). The probability of PBT being cost-effective was < 30% at any willingness to pay.

Conclusions These results suggest that PBT cannot be considered a cost-effective treatment for brain tumours, compared to CRT.

Trial registration Not applicable.

Methods

Overview

In Sweden, a non-randomized non-blind longitudinal study from the ProtonCare project collected data of 350 patients, which were followed during their treatment for a brain tumor, and through a one-year follow-up period [30]. Of those, 310 patients received PBT, while

Health outcomes

The primary outcome in this economic evaluation was the QALY, a composite measure encompassing both HRQoL and mortality (length of life). HRQoL was assessed by the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 questionnaire, an instrument designed to measure HRQoL in patients diagnosed with cancer [31]. It includes five

Table 4 Cost-effectiveness results (costs in 2023 US\$)

	Costs mean (95% CI)	QALY mean (95% CI)	Incremen- tal costs mean (95% CI)	Incremen- tal QALY mean (95% CI)	ICER
PBT	14,639 (11,829	0.746 (0.685–	1,372 (-4,914–	-0.049 (-0.195–	Dominated
	- 17,449)	0.8074)	7,659)	0.097)	
CRT	13,308 (8,111– 18,505)	0.774 (0.648– 0.901)			

Abbreviations PBT – Proton beam therapy, CRT – Conventional radiotherapy, ICER – Incremental cost effectiveness ratio, QALY – Quality adjusted life year

Dominated means that PBT is more costly and yields less QALYs than CRT

Source: Cost-effectiveness of proton beam therapy vs. conventional radiotherapy for patients with brain tumors in Sweden: results from a non-randomized prospective multicenter study - PubMed

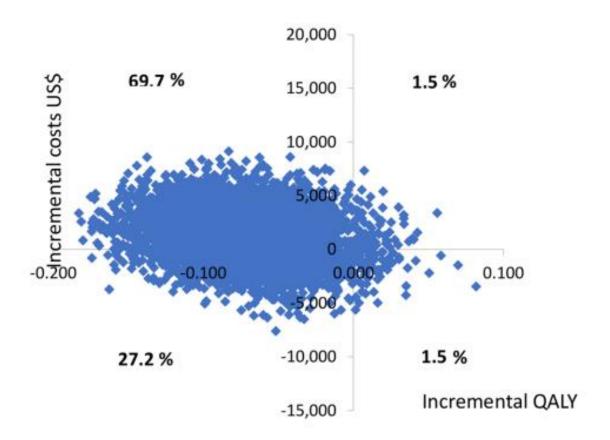


Fig. 1 Cost Effectiveness plane PBT vs. CRT

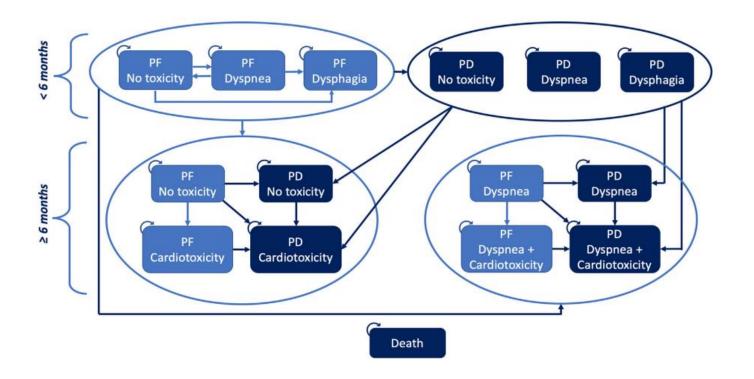
Source: Cost-effectiveness of proton beam therapy vs. conventional radiotherapy for patients with brain tumors in Sweden: results from a non-randomized prospective multicenter study - PubMed

Cost-effectiveness of proton radiotherapy versus photon radiotherapy for non-small cell lung cancer patients: Exploring the model-based approach

Loeki Aldenhoven ¹, B Ramaekers ², J Degens ³, C Oberije ⁴, J van Loon ⁵, A C Dingemans ⁶, D De Ruysscher ⁵, M Joore ¹

ABSTRACT

Introduction: Proton radiotherapy (PT) is a promising but more expensive strategy than photon radiotherapy (XRT) for the treatment of non-small cell lung cancer (NSCLC). PT is probably not cost-effective for all patients. Therefore, patients can be selected using normal tissue complication probability (NTCP) models with predefined criteria. This study aimed to explore the cost-effectiveness of three treatment strategies for patients with stage III NSCLC: 1. photon radiotherapy for all patients (XRT_{All}); 2. PT for all patients (PT_{All}); 3. PT for selected patients ($PT_{Individualized}$).


Methods: A decision-analytical model was constructed to estimate and compare costs and QALYs of all strategies. Three radiation-related toxicities were included: dyspnea, dysphagia and cardiotoxicity. Costs and QALY's were incorporated for grade 2 and \geq 3 toxicities separately. Incremental Cost-Effectiven Ratios (ICERs) were calculated and compared to a threshold value of \in 80,000. Additionally, scenario, sensitivity and value of information analyses were performed.

Results: PT_{All} yielded most QALYs, but was also most expensive. XRT_{All} was the least effective and least expensive strategy, and the most cost-effective strategy. For thresholds higher than &163,467 per QALY gained, $PT_{Individualized}$ was cost-effective. When assuming equal minutes per fraction (15 minutes) for PT and XRT, $PT_{Individualized}$ was considered the most cost-effective strategy (ICER: &76,299).

Conclusion: Currently, PT is not cost-effective for all patients, nor for patient selected on the current NTCP models used in the Dutch indication protocol. However, with improved clinical experience, personnel and treatment costs of PT can decrease over time, which potentially leads to $PT_{Individualized}$, with optimal patient selection, will becoming a cost-effective strategy.

© 2022 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 183 (2023) 109417 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Source: Cost-effectiveness of proton radiotherapy versus photon radiotherapy for non-small cell lung cancer patients: Exploring the model-based approach - PubMed

The state-transition model was constructed using cohort simulation and adopted a cycle length of three months. According to the Dutch health economic guidelines, a life-time time horizon, a societal perspective and a discount rate of 4.0 % for costs and 1.5 % for

Source: Cost-effectiveness of proton radiotherapy versus photon radiotherapy for non-small cell lung cancer patients: Exploring the model-based approach - PubMed

Table 5 Results of probabilistic sensitivity analyses (Sorted by costs).

Analysis	Strategy	Costs	Compared with XRT For all patients					Compared with next best
			QALY	NMB	$\Delta Costs$	Δ QALY	ICER	ICER
Base Case	XRT _{All}	€45,912	1,769	€95,627	-	-	-	-
	PT _{Individualized}	€70,866	1,922	€82,885	€24,954	0,153	€163,467	€163,467
	PT_{All}	€79,695	1,951	€76,400	€33,783	0,182	€185,673	€301,396
Healthcare perspective	XRT_{All}	€41,231	1,769	€100,289	-	-	-	-
	PT _{Individualized}	€61,726	1,922	€92,034	€20,495	0,153	€134,256	€134,256
	PT_{All}	€68,904	1,951	€87,176	€27,673	0,182	€152,094	€245,053
Excluding productivity losses PT	XRT_{All}	€41,912	1,769	€95,608	-	-	-	-
	PT _{Individualized}	€69,662	1,922	€84,098	€23,750	0,153	€155,582	€155,582
	PT_{All}	€78,023	1,951	€78,057	€32,111	0,181	€176,485	€285,415
Equal minutes per fraction	XRT_{All}	€45,410	1,753	€97,794	-	-	-	-
	PT _{Individualized}	€57,416	1,910	€95,376	€12,007	0,157	€76,299	€76,299
	PT_{All}	€61,189	1,940	€94,023	€15,780	0,188	€84,106	€124,719

QALY = Quality Adjusted Life Years. NBM = Net Monetary Benefit.

ICER = Incremental Cost Effectiveness Ratio.

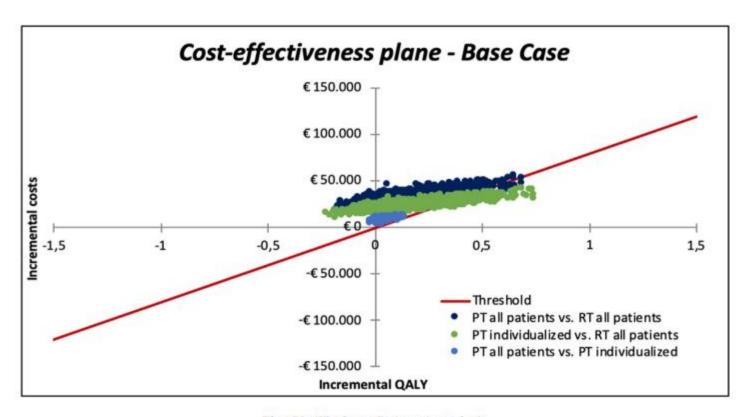


Fig. G1. CE plane: Base case analysis.

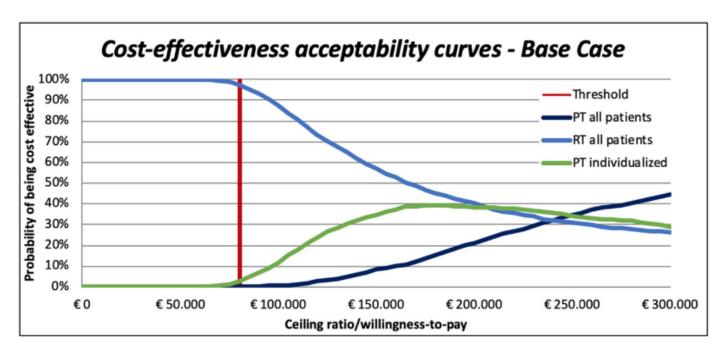


Fig. G2. CEAC: Base case analysis.

Bibliography

- Drummond, M., Sculpher, M.J., Claxton, K., Stoddart, G.L., Torrance, G.W., Askews & Holts Library Services, 2015. Methods for the economic evaluation of health care programmes. Oxford university press
- John Brazier, Julie Ratcliffe, et al. <u>Measuring and Valuing Health Benefits for Economic Evaluation 2016</u>
- Alastair M. Gray. <u>Applied Methods of Cost-effectiveness Analysis in Health Care (Handbooks in Health Economic Evaluation Series)</u>. 2010
- Muennig P, Bounthavong M. Cost-Effectiveness Analysis in Health: A Practical Approach, 3rd Edition. Jossey-Bass 2016. http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119011264.html
- https://www.ispor.org/heor-resources/good-practices-for-outcomes-research
- https://www.cadth.ca/guidelines-economic-evaluation-health-technologies-canada-0
- https://www.thelancet.com/action/showPdf?pii=S2772-3682%2823%2900101-4

Bibliography

- https://www.ispor.org/docs/default-source/euro2022/economic-evaluation-guideline-development-the-lebanese-experience.pdf?sfvrsn=74ab5376_0
- https://icer.org/wp-content/uploads/2021/01/ICER_HTA_Guide_102720.pdf
- https://cirsci.org/wp-content/uploads/dlm_uploads/2022/06/CIRS-RD-Briefing-85-6-agencies-v2.3.pdf
- https://www.cirsci.org/
- https://www.efpia.eu/media/rm4kzdlx/the-pharmaceutical-industry-in-figures-2023.pdf
- https://www.efpia.eu/media/s4qf1eqo/efpia_patient_wait_indicator_final_report.pdf
- https://germanmarketaccesssimplified.com/category/news-and-updates/pricing/
 - Husereau D, Drummond M, Augustovski F, de Bekker-Grob E, Briggs AH, Carswell C, Caulley L, Chaiyakunapruk N, Greenberg D, Loder E, Mauskopf J, Daniel Mullins C, Petrou S, Pwu RF, Staniszewska S; CHEERS 2022 ISPOR Good Research Practices Task Force. Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) statement: Updated reporting guidance for health economic evaluations. Health Policy Open. 2022 Jan 5;3:100063. doi: 10.1016/j.hpopen.2021.100063. PMID: 37383570; PMCID: PMC10297740.

 87

 https://pubmed.ncbi.nlm.nih.gov/37383570/

Thank you for your attention