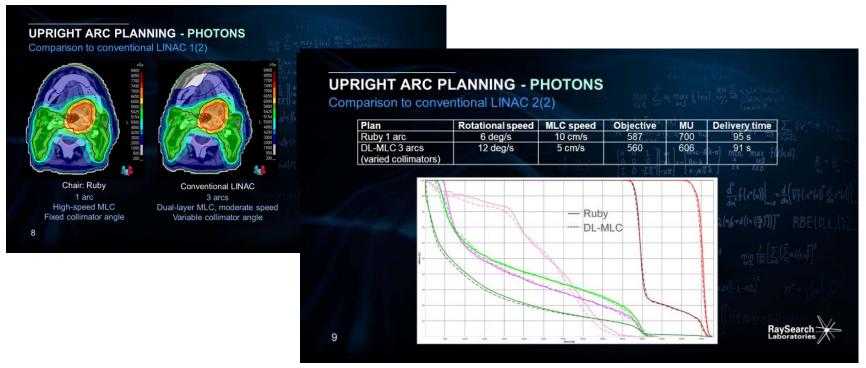
Sebastian Klüter Heidelberg University Hospital, Germany

New developments in photon RT: Advanced treatment machines

Upright radiotherapy with photons

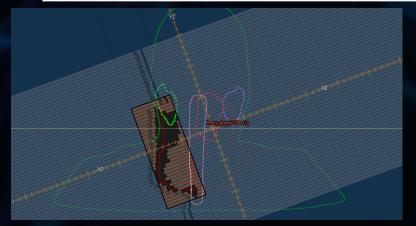
Grace solution from Leo Cancer Care:

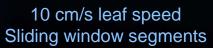
- Upright patient positioning system
- CT scanner
- 6MV FFF Linac, 1200 MU/min

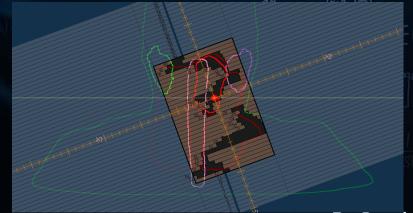

Potential benefits from the Linac perspective:

- Easier access to components
- MLC is easier to control, does not need to rotate
- Radiation protection is easier

Machine characteristics influence treatment planning

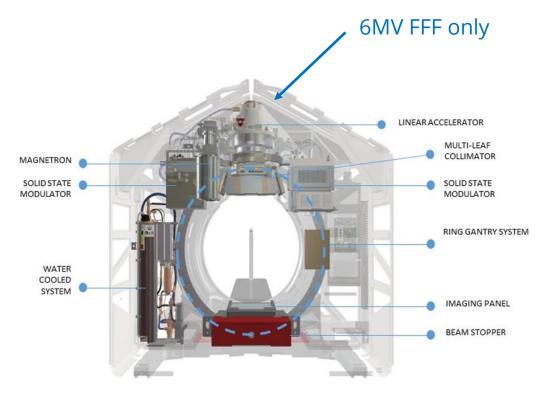



UPRIGHT ARC PLANNING - PHOTONS


By courtesy of Erik Engwall, Raysearch Laboratories

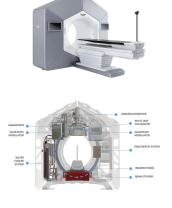
Benefit of high MLC leaf speed

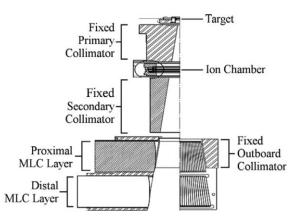
Plan	Rotational speed	MLC speed	Objective	MU MU	Delivery time
Ruby 1 arc	6 deg/s	10 cm/s	587(1)-11	15-75 700 Vsel	95 s
(sliding window)		100 N	CU OF T N) (Hyaca)	[A-27] min may f/
Ruby 1 arc	6 deg/s	3.5 cm/s	617 0	700 b	279 s 😽
(sliding window)		rest selent	I 0 -XT']-	π $x-\mu \pi$	e] 5.t X≥0
Ruby 1 arc	6 deg/s	3.5 cm/s	929	713	62 s
(non sliding window)			$f(x_k+\alpha_k p_k) \leq f($	k)+MOCKVf(xk)Q	d f(x*(0)) =


3.5 cm/s leaf speed "Step-and-shoot" segments

Advanced photon treatment machines

Example: Varian Halcyon




Cozzi L et al., Technology in Cancer Research and Treatment, Volume 17, 2018.

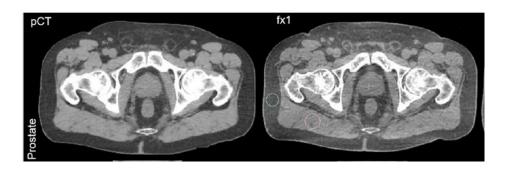
Compact photon treatment machines

Here: double stack MLC

Fig. 1. Schematic drawing of the HalcyonTM head assembly.¹⁸ The primary and secondary collimators are fixed in place, and are not movable jaws. Shown are the positions of the proximal (upper) and distal (lower) MLC layers, with the bottom left displaying the leaf side view, and the bottom right illustrating the leaf end view.

TABLE 1 Comparison of the Varian HalcyonTM MLC system^{17,18} to the widely used Varian MillenniumTM 120-leaf MLC system.^{19,20}

Characteristics	Halcyon [™] MLC	Millennium TM 120-leaf MLC	
MLC Configuration			
Layers	Dual-layer	Single-layer	
Beam shaping technique	Proximal and distal MLCs with 0.5 cm offset (no jaws)	MLC and jaws	
Number of leaves	114 (29/bank on proximal, 28/bank on distal)	120 (60/bank)	
Maximum field size	28 cm × 28 cm	$40~\text{cm} \times 40~\text{cm}$	
Direction of motion	Transverse	Transverse	
Physical properties			
Leaf end shape	Rounded	Rounded	
Leaf end radius	23.4 cm	8.0 cm	
Leaf height	7.7 cm	6.5 cm	
Leaf width (at isocenter)	1 cm	Pairs 1 & 40: 1.4 cm Pairs 2–10 and 51–59: 1 cm All others: 0.5 cm	
Nominal 6MV- FFF transmission	Single-layer: 0.47% Dual-layer: 0.01%	1.36%	
MLC motion			
Leaf end position accuracy	1 mm	1 mm	
Leaf velocity	5.0 cm/s	2.5 cm/s	
Leaf acceleration	200 cm/s/s	50 cm/s/s	
Position detection mechanism	Primary: Motor encoder Secondary: Soft pots	Primary: Motor encoder Secondary: Soft pots	
Overtravel across central axis	14 cm	15 cm	

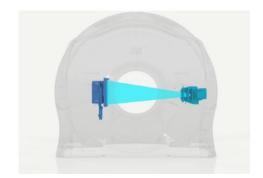


Advanced integrated imaging

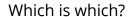
→ Superior onboard image quality is necessary for (online) adaptive treatments Example: Varian HyperSight

Schmidt et al. Radiation Oncology (2025) 20:153

https://doi.org/10.1186/s13014-025-02730-8

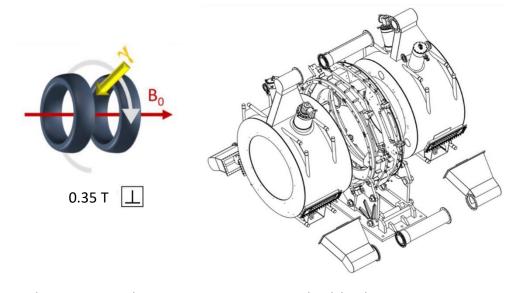

Ralf Schmidt^{1,4}, Thanh Nguyen¹, Alicia S. Bicu^{1,4}, Paula Cvachowec¹, Victor Siefert^{1,4}, Miriam Eckl¹, Marvin Willam¹, Matthias F. Froelich², Stefan O. Schoenberg³, Michael Ehmann^{1,2}, Daniel Buergy^{1,2}, Sven Clausen¹, Jens Fleckenstein¹, Frank A. Giordano^{1,2,4}, Judit Boda-Heggemann^{1,2} and Constantin Dreher^{1,2,4,5}

Radiation Oncology


Advanced integrated imaging

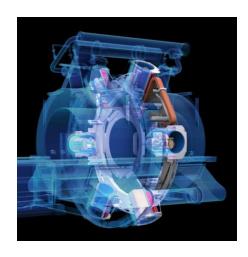
Example: Accury Radixact Tomotherapy

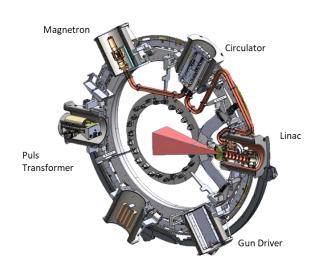
Helical kVCT up to 135cm length, 50cm FOV Relatively fine beam (1-2cm)

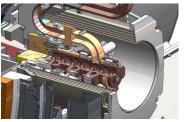


Advanced integrated imaging

Example: MR-Linac

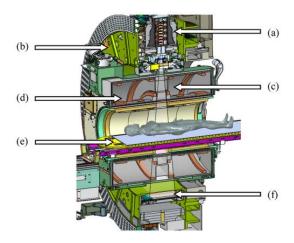


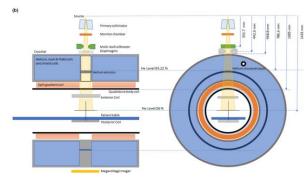

- split, superconducting 0.35 T magnet (double-donut)
- magnet halves are mechanically and thermally connected
- circular radiation gantry in 28cm gap between magnet halves
- 70cm bore, 50cm max. FOV



Gantry design: shielding buckets

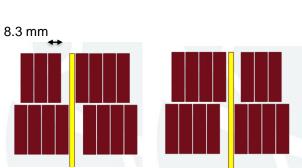
- Shielding buckets: combination of steel + mu-metal for magnetic shielding and carbon fiber + copper for RF shielding
- \rightarrow Linac is shielded from the B₀-Field
- → MR is shielded from electromagnetic noise
- Imaging is limited to static gantry and MLC

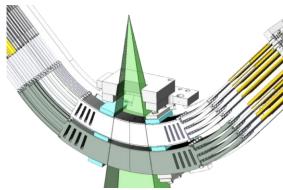



Elekta Unity MR-Linac

- 1.5 T transverse magnetic fiels
- Only one magnet/cryostat
- Linac gantry around the cryostat (greater distance)
- Complete RF shielding between linac components and MRI

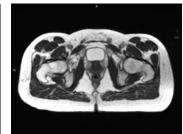
Shoobridge and Baines, Phys End Sci Med 2022, DOI:10.21203/rs.3.rs-368526/v1

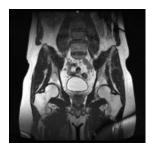


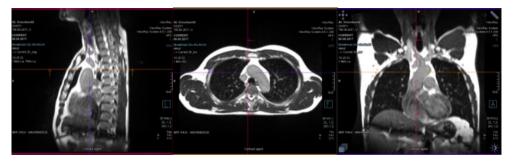

Roberts DA et al., Med Phys 2021, DOI: 10.1002/mp.14764

RT system: Linac and MLC

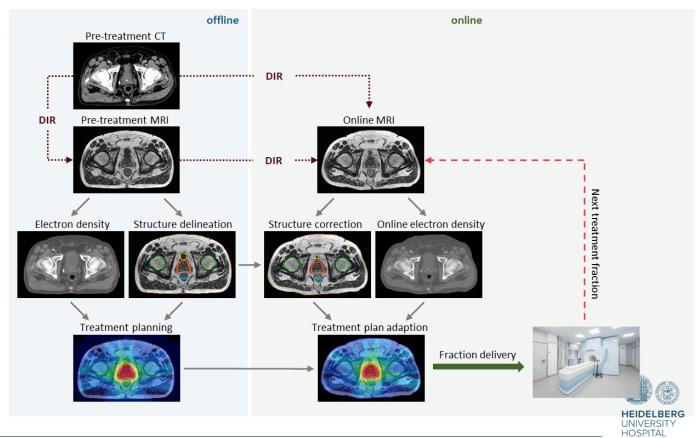
- 6MV FFF Linac with 600 MU/min @90cm SAD
- double stack, double focus MLC, 138 tungsten-alloy leaves
- max. Fieldsize 27.4 x 24.1 cm², min. Fieldsize 2 x 4.15 mm²
- no additional jaws
- Physical leaf width = 8.3mm @ isocentric plane
- Both stacks are shifted by half a leaf width





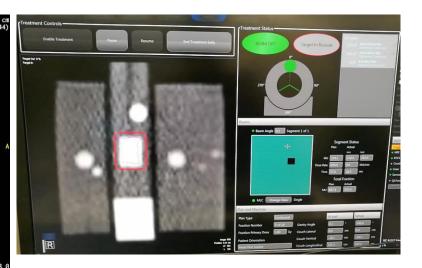


1. Soft-tissue based positioning

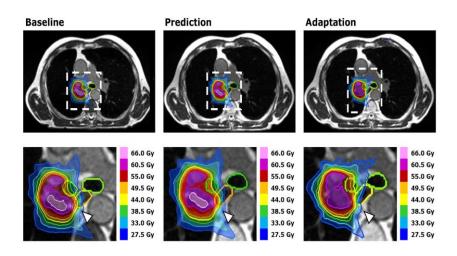


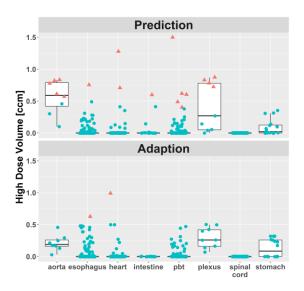
2. Online adaptation




3. Real-time imaging and beam control

3. Real-time imaging and beam control





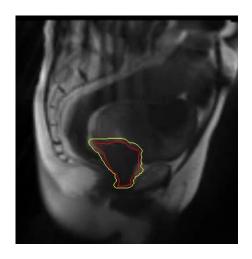
Potential of Pulmonary Adaptive MR-guided SBRT

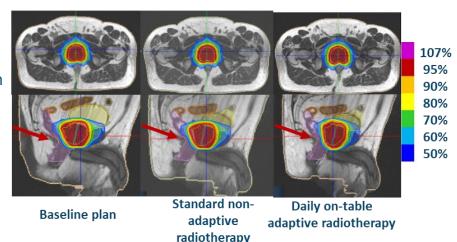
- Daily adaptation: reduce OAR dose, increase target coverage
- OAR very close / margin reduction

Daily plan adapation is especially necessary: In tumors with (PTV) contact to radiosensitive OARs For safe dose escalation

OAR dose constraint violations:

> 90% of patients with PTV< 2mm distance to OAR


Regnery S, ..., Hörner-Rieber J, Front Oncol 2022 Regnery,...Hörner-Rieber, Lung Cancer 2023



MRI-guided adaptive RT therapy for prostate

5 x 7,5 Gy, SIB with up to 5 x 8,0 Gy boost (mpMRI)

- → Daily adaptive RT enables hypofractionation
- → Daily adaptive RT enables margin reduction
- → MRI-based beam gating enables further margin reduction

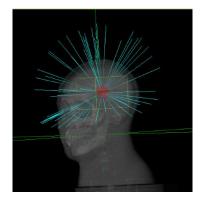
Ristau,...Hörner-Rieber, Körber, Rad Oncol 2022 Fink et al., Front Oncol. 2024 Fink et al., ctRO 2024

Advanced photon treatment machines

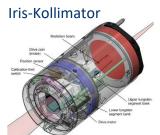
Dedicated Linacs for online adaptive

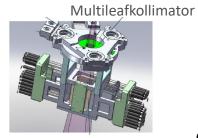
Linac hardware is the same

www.varian.com


- Integrated software solutions for online treatment plan adaptation
- But: unfortunately, vendors lock down everything, no interfaces (HW and SW)

Robotic Photon Radiotherapy: CyberKnife


Orthogonal X-Ray





Continuous, automated position correction based on 2D X-Ray imaging and automated image registration

Integrated motion management: also for standard linacs

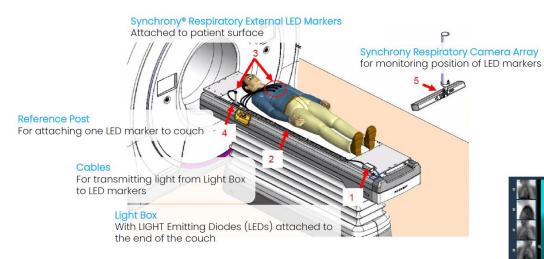
www.brainlab.com

But: 2D X-Ray imaging

→ currently, if target is not visible in the X-ray image, gold marker implantation is needed

Motion management: tracking

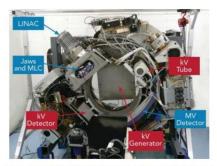
- Breathing motion detection based on LED on patient chest
- Correlation with tumor position in X-ray image
- Prediction of the movement and online correction by the robot
- Re-assessment of the model by re-imaging

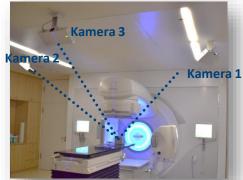


Motion management for tomotherapy

Here: same principle like the Cyberkinfe system

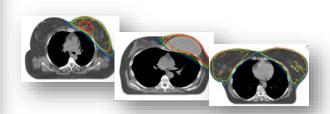
If Tumor is not visible in the X-Ray image, Gold markers (fiducials) need to be implanted

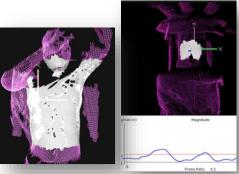



Fig. 1. A picture of the experimental tomotherapy system, highlighting the kV x-ray tube and detector mounted orthogonal to the MV beamline. The kV generator is mounted to a metal plate on the back side of the gantry.

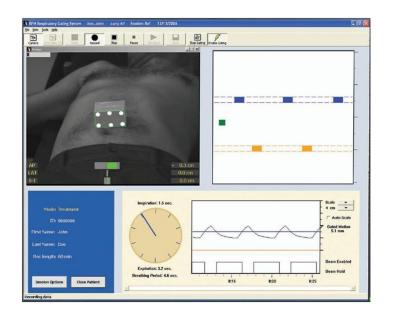
Surface Guidance

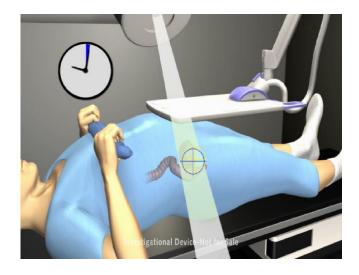
3D detection of the patient surface using optical cameras

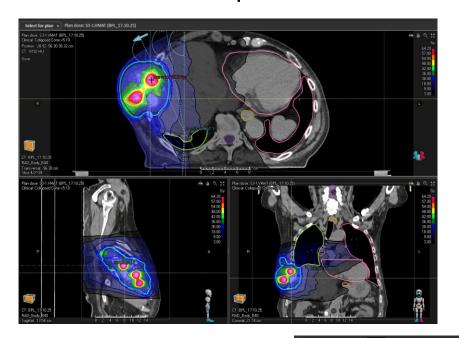


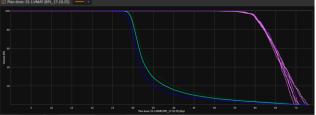

Main use:

Deep inspiration breathhold for breast irradiation Improvement of patient positioning


Gating for thoracic treatments

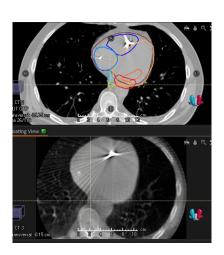



Other methods for gating



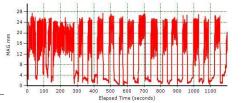
Advanced concepts can be carried out with standard linacs

Lattice therapy

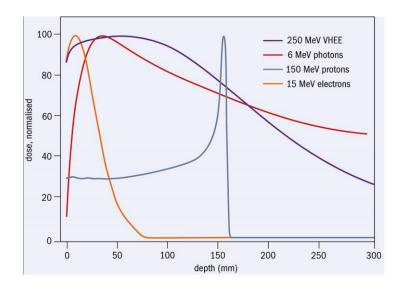


Advanced concepts can be carried out with standard linacs

Cardiac ablation for therapy-resistant ventricular tachycardia


24 Gy in one session

Here: treated in breathhold



What I did not talk about

- Electron FLASH with standard Linacs
- Photon FLASH
- Very High Energy Electrons (VHEE)
 (w/wo FLASH)

