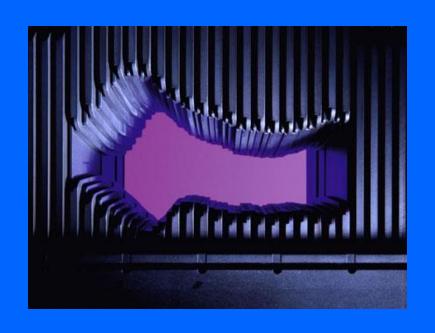
Radiotherapy workflow

Mario Ciocca

Medical Physics Unit, Fondazione CNAO, Pavia (I)

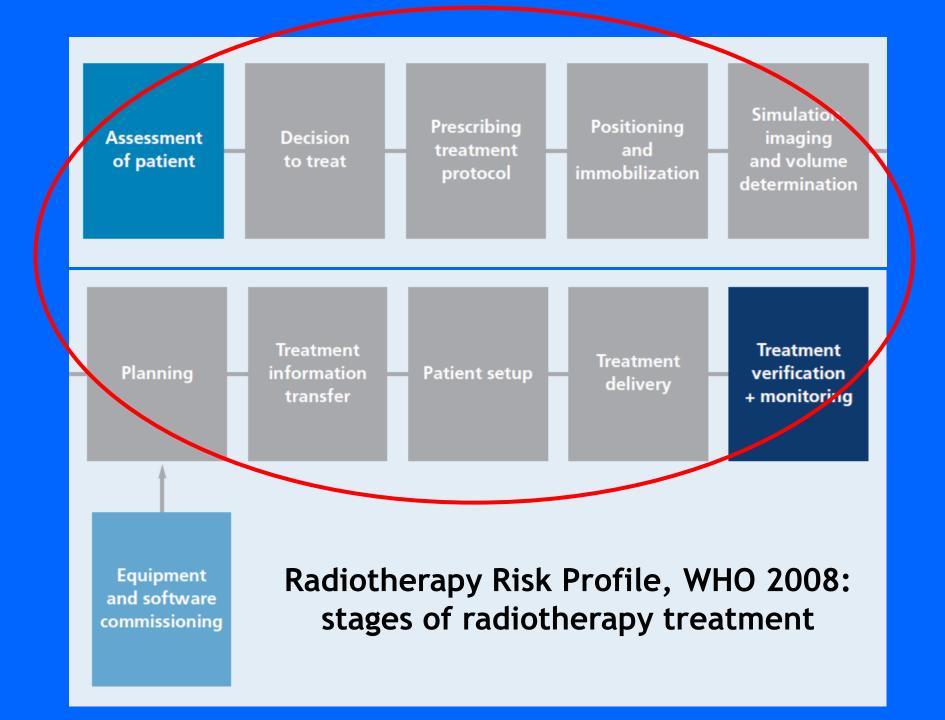


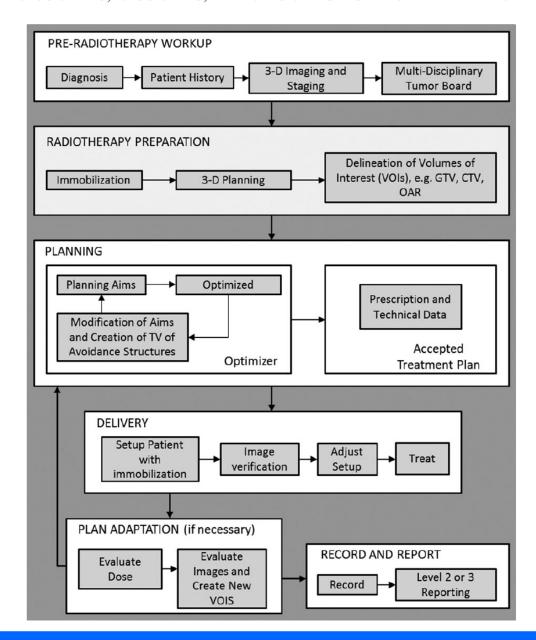
Modern conventional RT

Complex treatment techniques included

MLC

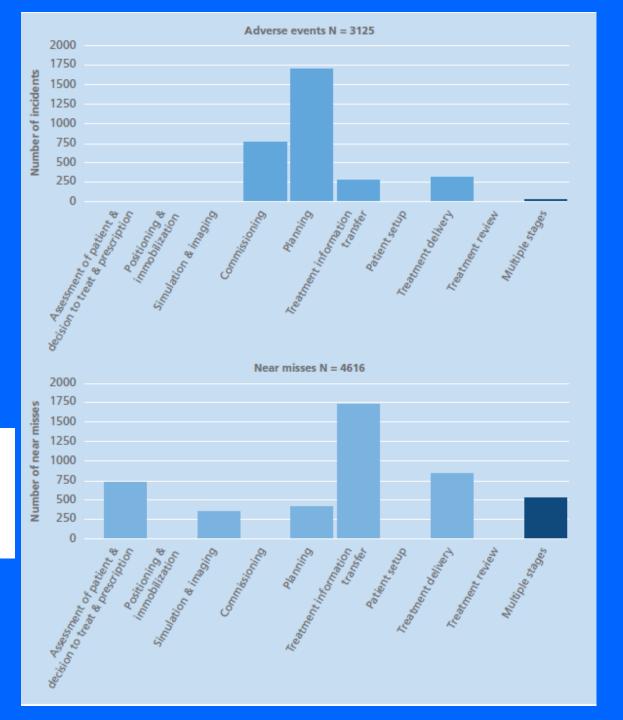
Dedicated linacs


Particle RT



Journal of the ICRU Vol 16 No 1–2 (2016) Report 93 Oxford University Press

Main roles and responsibilities


- ✓ Radiation oncologist (MD)
- ✓ Medical physicist (MPE)
- Radiotherapy technologist (RTT) and dosimetrist
- Biomedical engineer
- ✓ Nurse
- Anesthesiologist
- Psychologist

Stage	Description	Respor RO	nsibility RT	MP
1 Assessment of patient	History taking, physical examination, review of diagnostic material	•		
2 Decision to treat	Consideration of guidelines, patient wishes	•		
3 Prescribing treatment protocol	Determination of site, total dose, fractionation and additional measures such as dental review or concurrent chemotherapy	•		
4 Positioning and immobilization	Setting up the patient in a reproducible position for accurate daily treatment		•	
5 Simulation, imaging and volume determination	Determining region of the body to be treated using diagnostic plain X-ray unit with the same geometry as a treatment unit (simulator) or dedicated CT scanner	•	•	
6 Planning	Determining X-ray beam arrangement and shielding then calculating dose to achieve prescription		•	•
7 Treatment information transfer	Transfer beam arrangement and dose data from treatment plan to treatment machine		•	•
8 Patient setup	Placing patient in treatment position for each treatment		•	
9 Treatment delivery	Physical delivery of radiation dose		•	•
10 Treatment verification and monitoring	Confirmation of treatment delivery using port films and dosimeters Monitoring of the daily setup Monitoring of tolerance by regular patient review	•	•	•

Risk management

A "near miss" is defined as:

A potential significant event that could have occurred as the consequence of a sequence of actual occurrences but did not occur owing to the plant conditions prevailing at the time.

doi:10.1016/j.ijrobp.2007.06.081

FMEA

AAPM TG 100

QA FOR RT SUPPLEMENT

A METHOD FOR EVALUATING QUALITY ASSURANCE NEEDS IN RADIATION THERAPY

M. Saiful Huq, Ph.D.,* Benedick A. Fraass, Ph.D.,† Peter B. Dunscombe, Ph.D.,‡ John P. Gibbons, Jr., Ph.D.,§ Geoffrey S. Ibbott, Ph.D.,¶ Paul M. Medin, Ph.D., Arno Mundt, M.D.,**

Int. J. Radiation Oncology Biol. Phys., Vol. 82, No. 2, pp. e305–e311, 2012 Copyright © 2012 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/\$ - see front matter

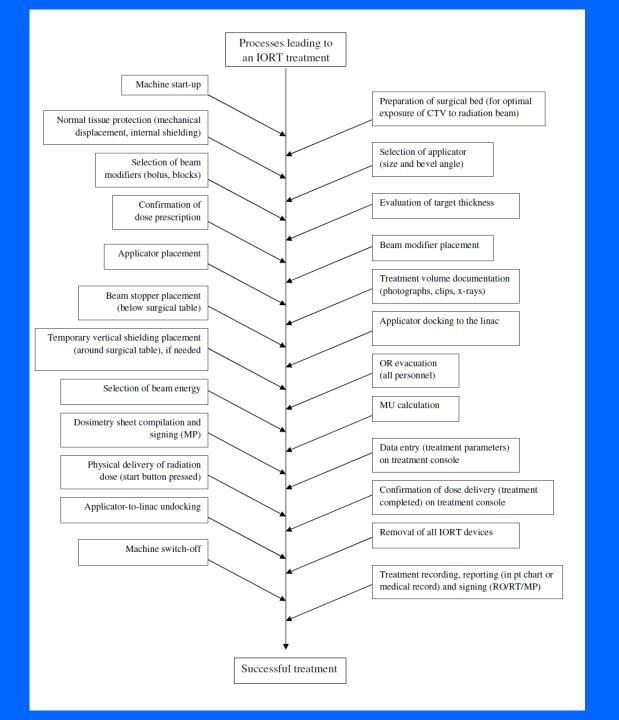
doi:10.1016/j.ijrobp.2011.05.010

PHYSICS CONTRIBUTION

APPLICATION OF FAILURE MODE AND EFFECTS ANALYSIS TO INTRAOPERATIVE RADIATION THERAPY USING MOBILE ELECTRON LINEAR ACCELERATORS

Mario Ciocca, M.S.,* Marie-Claire Cantone, Ph.D.,†‡ Ivan Veronese, Ph.D.,†‡
Federica Cattani, M.S.,§ Guido Pedroli, M.S.,§ Silvia Molinelli, M.S.,* Viviana Vitolo, M.D.,

and Roberto Orecchia, M.D.,¶**††


Open Access

Application of failure mode and effects analysis to treatment planning in scanned proton beam radiotherapy

Marie Claire Cantone¹, Mario Ciocca², Francesco Dionisi³, Piero Fossati^{2,5}, Stefano Lorentini³, Marco Krengli^{2,4}, Silvia Molinelli², Roberto Orecchia^{2,5}, Marco Schwarz^{3,6}, Ivan Veronese^{1*} and Viviana Vitolo²

FMEA methodology (proactive risk analysis method)

- Multi-disciplinary approach
- ✓ First step: identification of the involved sub-processes (process tree)
- ✓ Adapted to the user's specific context and procedure (individual case)

77.1				۰		
Pl	а	n	п	İ	n	Q.

I. Selection of the reference CT scan for planning	ı l	II. Selection of the lower and upper HU thresholds for automatic delineation of external contour
III. Manual correction of external contour		IV. Delineation of CT artefacts, altered structures, metal implants and manual assignment of specific
V. Localization of the origin of coordinates identified by lasers		HU numbers VI. Determination of optimal plan isocenter (PTV
VII. Definitive isocenter definition		centre)
IX. Couch origin of coordinates identification for absolute positioning	$ \cdot $	VIII. Transfer of definitive isocenter coordinates to movable lasers, if different from the origin of coordinates
XI. Target selection and dose prescription for each target (dose prescription type – point or volume, mean, median, minimum,- total dose, -		X. Creation of the plan and plan name assignment
fractionation scheme)		XII. Creation of the field and field name assignment
XIII. Assignment of targets to the each field	N,	XIV. Definition of plan geometry and fields
XV. Selection of the field direction (gantry angle) XVII. Setting of pencil beam parameters: -FWHM,		configuration setting of the isocenter position (for each field)
-scanning step in transversal plane, -energy step, - passive system		XVI. Selection of field direction (couch rotation)
XIX. Definition of dose calculation parameters (physical beam model, dose calculation grid, properties of the particles per spot matrix, dose calculation algorithm, nuclear correction, spot decomposition)		XVIII. Selection of the physical and biological database for dose calculation
XXL Definition of cost function and dose	i 🗸	XX. Setting of optimization modality: SFUD or IMPT
XXIII. Sanity check of the beam parameters		XXII. Initial/iterative definition of target/OAR constraints and weights for dose optimization
distribution (e.g. distal and proximal layers for each field)	N	XXIV. Inverse planning process starting
XXV. Plan evaluation	N/	XXVI. Production of competing plans, if needed
XXVII. Evaluation of the best plan		XXVIII. Creation of set-up fields and calculation of DRRs
XXIX. Plan review	Ν,	XXX. Plan approval
XXXI. Creation of patient verification plan for pre-treatment QA: -selection of the phantom, - selection of geometrical parameters (SSD, gantry angle), -RT dose map export, if available		XXXII. Creation of the reports of treatment and verification plans

XXXIV. Treatment plan transfer to the OIS

angle), -RT dose map export, if available

XXXIII. Report print-out, check and signing

- ✓ Second step: identification of what might be wrong (*failure modes*), creating the *fault tree*, together with causes and potential effects
- ✓ Third step: ranking all failure modes in terms of priority, using 3 parameters (0, S, D)
 - ✓ occurrence
 - ✓ severity
 - ✓ detectability

Risk priority number (RPN) = $0 \times 5 \times D$

doi:10.1016/j.ijrobp.2008.10.038

CLINICAL INVESTIGATION

Quality Improvement

EVALUATION OF SAFETY IN A RADIATION ONCOLOGY SETTING USING FAILURE MODE AND EFFECTS ANALYSIS

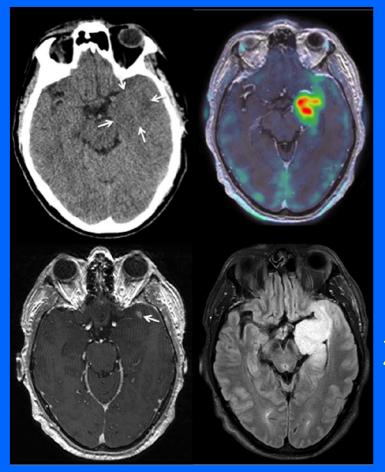
ERIC C. FORD, Ph.D.,* RAY GAUDETTE, M.S.,* LEE MYERS, Ph.D.,* BRUCE VANDERVER, M.D.,† LILLY ENGINEER, DR.P.H., M.D., M.H.A.,† R

JOHN WONG, Ph.D.,* AND

* Department of Radiation Oncology and Molecular Radiatio Hopkins Univ

Table 1. Example scoring system of severity, frequency of occurrence, and detectability for input into failure mode and effects analysis

and offeets analysis							
Score	Severity Occurrence		Detectability				
1	No effect	Less than every 5 years					
2	Dose $\Delta5\%$	Every 2–5 years	Very easy to detect				
3		Once a year					
4	Minimal delay in care	Several times a year	Easy to detect				
5		Once a month					
6	Allergic reaction; moderate delay in care	Several times a month	Mildly difficult to detect				
7		Once a week					
8	Dose Δ20%, reportable	Several times a week					
9		Once a day					
10	Patient dies	Several times a day	Impossible to detect				


Table 2 Application of failure mode and effects analysis for the treatment planning stage in proton beam radiotherapy

Sub-process	N	Potential failure mode	Potential causes of failure	Potential effects of failure	0	5	D	RPN
(I) Selection of the reference CT scan for planning	1	Error in selecting the CT scan (e.g. incorrect patient set up, outdated representation of the anatomy) in case of multiple CT scans	Human error, failure in the communication between operators	Wrong dose distribution/ wrong dose delivery	3	8	4	96
	2	Outdated representation of the anatomy (single CT scan)	Anatomical changes (related to time delay)	Wrong dose distribution/ wrong dose delivery	3	8	8	192
(III) Manual correction of external contour	3	Incorrect external contour definition (body or patient mask countour underestimation, i.e. not fully included in the external contour)	Human error	Wrong dose distribution / wrong dose delivery	4	5	4	80
	4	Failure of object/region identification	Human error	Wrong dose distribution	3	8	4	96
(IV) Delineation of CT artefacts, altered structures, metal implants and manual assignment of specific HU numbers	5	Inaccurate delineation	Human error	Wrong dose distribution	4	6	6	144
	6	Incorrect HU number manual assignment	Human error or lack of documentation from the referring clinicians (e.g. surgeons)	Wrong dose distribution	4	7	7	196
	7	Lack of couch origin of coordinates definition	Human error	Unintended normal tissue irradiated and CTV missing	3	10	3	90

- ✓ Last step: for the most critical failure modes (RPN > 125 o S-index very high), identification of additional safety measures to mitigate the risk and defining a priority list based on
 - expected efficacy
- feasibility (costs, needed resources, time)

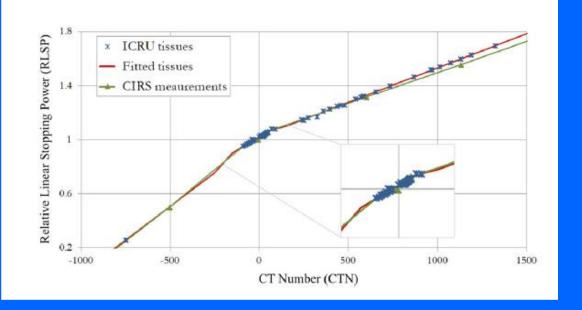
IMPORTANT: risk mitigation strategies to be verified in the reality once defined!

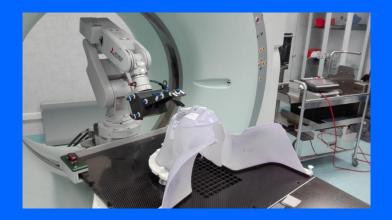
- ✓ independent, double-checking of MU calculation and data entry to be stated as mandatory
- ✓identification of a dedicated radiotherapy staff, well trained to IORT procedures
- ✓ implementation and extensive use of real-time in-vivo dosimetry procedures, allowing immediate action levels to be applied in case of detected dose discrepancies

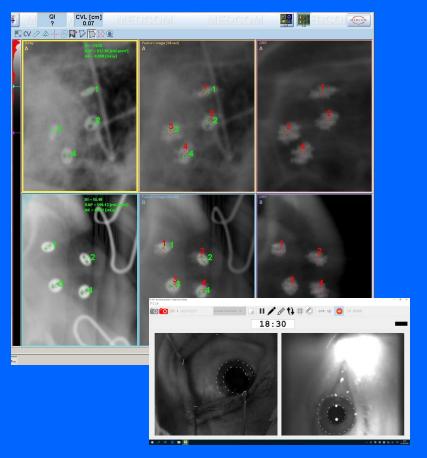
Simulation, imaging and volume determination

3-D imaging: CT, MRI, PET-CT

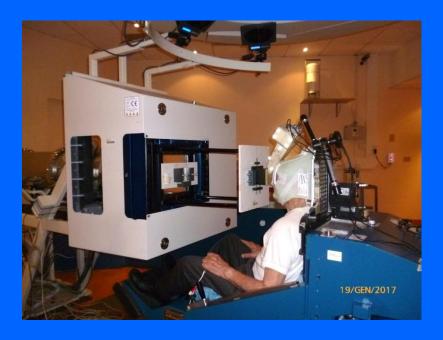
Planning CT: pt anatomy in treatment conditions


Planning CT




HU (CT N) conversion to relative ED or SP

e8 Farr et al.: Proton commissioning


Simulation, imaging and volume determination

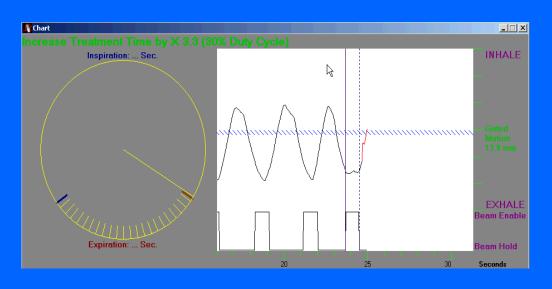
> 600 ocular melanoma pts treated in upright position since 2016 at CNAO

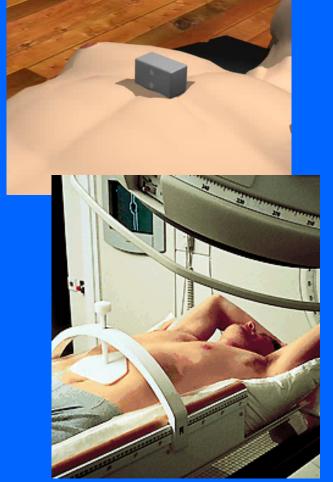
Measuring eye deformation between planning and proton beam therapy position using magnetic resonance imaging

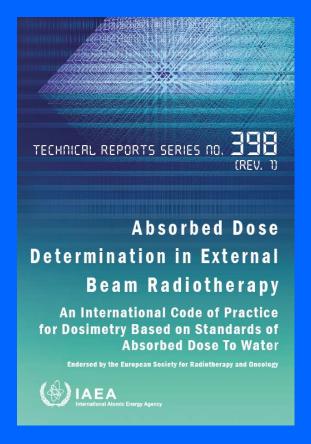
Myriam G. Jaarsma-Coes ^{a,b,*}, Marina Marinkovic ^a, Eleftheria Astreinidou ^c, Megan S. Schuurmans b, Femke P. Peters c, Gregorius P.M. Luyten a, Coen R.N. Rasch c, Jan-Willem M. Beenakker a,b

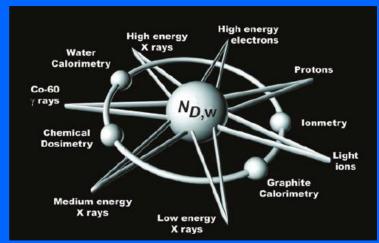
- ^a Ophthalmology, Leiden University Medical Centre, Leiden, Netherlands
- b Radiology, C.J. Gorter Centre for High Field MRI, Leiden University Medical Centre, Leiden, Netherlands
- c Radiotherapy, Leiden University Medical Centre, Leiden, Netherlands

Change in gravity direction produced no substantial changes in sclera and tumour shape, therefore supinely acquired images can be used to plan ocular-PBT in seated position




- ✓ Organ position changes and deformation due to gravity do occur when positioning from supine to upright
- ✓ Larger lung volumes associated with upright positioning may allow for a reduction in mean lung dose
- ✓ The change in heart position relative to the sternum could potentially reduce radiation induced cardiovascular disease


Organ motion management: 4-D imaging



When a dosimeter is used in a beam of quality Q different from that used in its calibration, Q_o , the absorbed dose to water is given by

$$D_{w,Q} = M_Q N_{D,w,Q_0} k_{Q,Q_0}$$
(3.2)

where the factor k_{Q,Q_o} corrects for the effects of the difference between the reference beam quality Q_o and the actual user quality Q, and the dosimeter reading M_Q has been corrected to the reference values of influence quantities, other than beam quality, for which the calibration factor is valid.