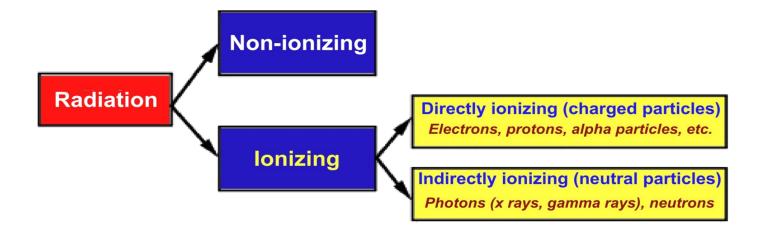
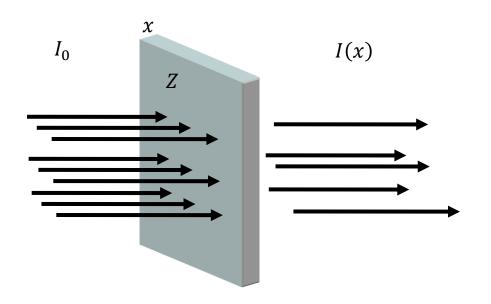

Sebastian Klüter Heidelberg University Hospital, Germany

Photon radiotherapy: Photon interactions and characteristics



Ionizing vs. non-ionizing radiation: photon energy



Directly vs. indirectly ionizing radiation

Photon Interaction leads to Attenuation

Lambert-Beer Attenuation Law:

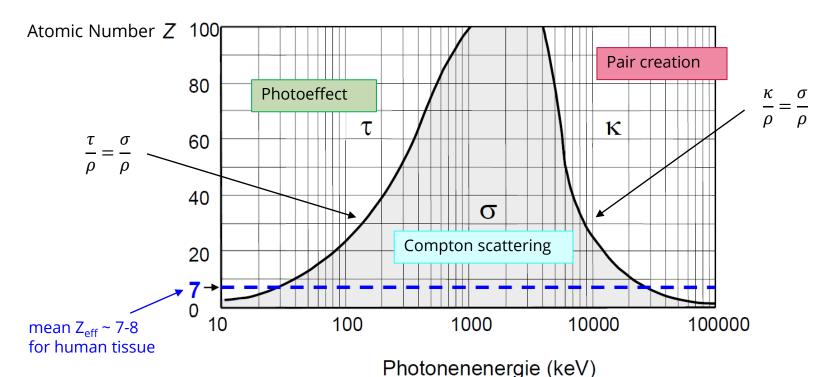
$$I(x) = I_0 \cdot e^{-\mu x}$$

Attenuation coefficient:

$$\frac{\mu \sim \frac{\text{Number of Interactions}}{\text{Pathlength}}$$

Three possible interaction processes:

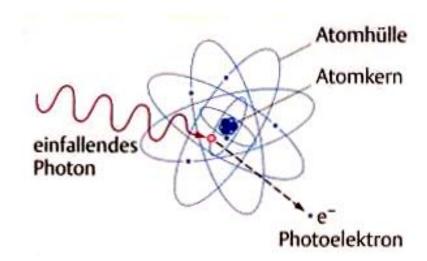
- Photoeffect au
- Compton scattering σ
- Pair creation κ


Total absorption:

$$\mu = \tau + \sigma + \kappa$$

Photon Interaction with matter

3 processes: Dependency on Z and E_{γ}



Photoeffect

Photon interacts with electron of an inner atomic shell

- → Complete energy transfer of the photon to the electron
- \rightarrow Electron is expelled, kinetic energy $E_k = E_y E_B$

Photo-Absorption Dependency

On photon energy

$$au \sim \frac{1}{E_{\nu}^3}$$

$$au \sim \frac{1}{E_{\gamma}}$$

for $E_{\nu} \ll 511 \, keV$

for $E_{\nu} \gg 511 \, keV$

Less absorption with higher energies

On **atomic number** Z of the target

$$\tau \propto \rho \cdot \frac{Z^n}{A} \approx \rho \cdot \frac{Z^{4-4,5}}{A}$$

 $\frac{Z}{A} \sim 0.5$ for lighter nuclei, ~ 0.4 for heavier nuclei

10⁻¹

0,001

 (cm^2/g)

10

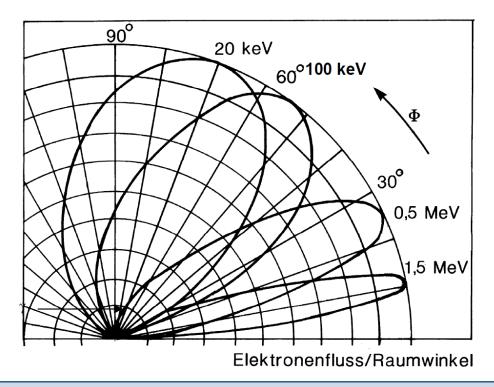
Higher absorption with higher Z

Radiation protection, collimators: Lead (Z=82), tungsten (Z=74), ...

Pb

0,1

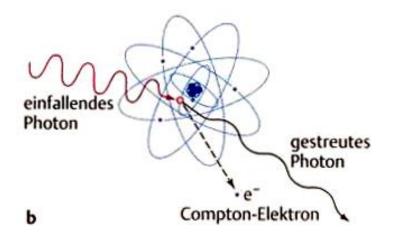
 $E_{\gamma}(MeV)$


0,01

1,0

$$\tau \sim \frac{1}{E_{\nu}}$$

Photoeffect: angular distribution of photoelectrons


→ With higher photon energy, photoelectrons are more forward directed

Compton Scattering

Collision between photon and electron of outer atomic shell

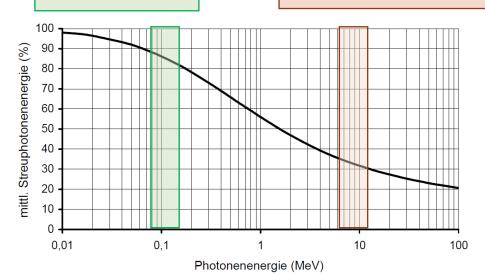
- → Incomplete energy transfer from the photon to the electron
- \rightarrow Result: Electron + scattered photon $E_{y'} < E_{y}$

Greatest relative contribution on energy deposition for medical use of photon radiation

Almost independent of Z!

$$\sigma \sim \frac{Z}{A}$$

Reason for worse contrast in diagnostic X-Ray imaging with higher kV

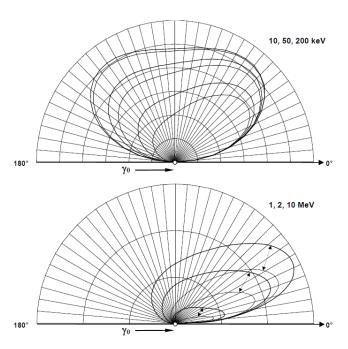

Compton Scattering: relative energy of the scattered photon

$$E_{\gamma}' = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_0 c^2} \cdot (1 - \cos \phi)}$$

$$E_{\gamma} \ll m_0 c^2 = 511 \, keV$$
 $E_{\gamma} \gg m_0 c^2 = 511 \, keV$

Diagnostic X-Ray

Therapeutic photons

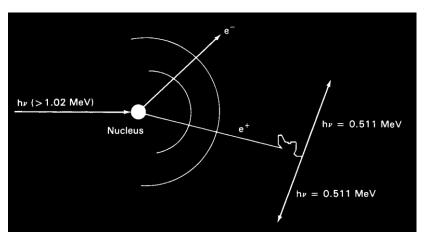


	Diagnostic	Therapeutic
Energy of scattered photon	A little less than incoming photon	Much less than incoming photon
Energy transfer to electron	Small	Large
Scatter angle dependency of energy transfer	Low	High

Compton Scattering: angular distributions

Scattered Photon

Compton Electron



Pair creation

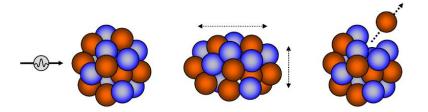
Photon energy is completely transferred into an electron – positron pair

Needs Coulomb field of an atomic nucleus: not possible in vacuum

Enegry threshold: $E_v > 2 m_0 c^2 = 1.022 \text{ MeV}$

 $\kappa_{\text{paar}} \propto Z \cdot \rho \cdot \log E_{\gamma}$

Weakly dependent on Z

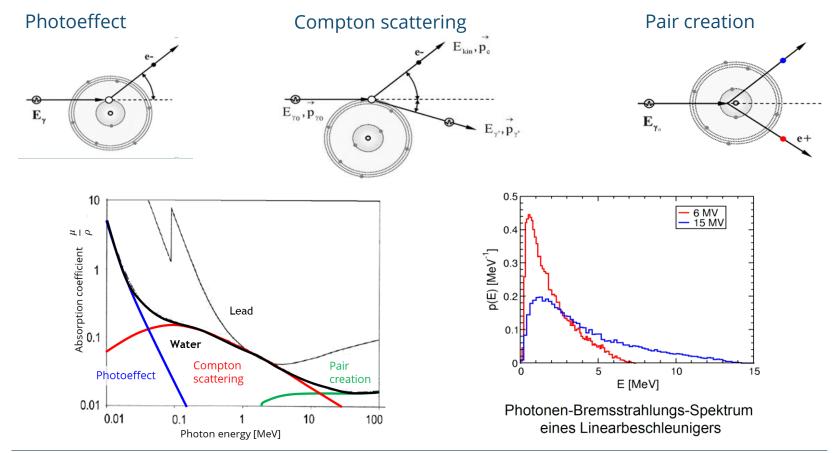

Secondary process: annihilation of e⁺ with another e⁻, emitted at 180°

$$e^+ + e^- \rightarrow 2\gamma$$
, $E_{\gamma} = 511 \text{keV}$ (PET)

Nuclear photoeffect

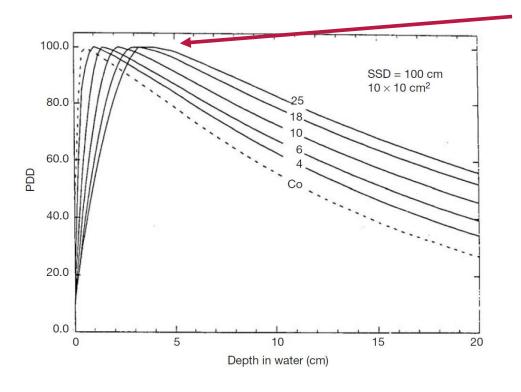
Atomic Nucleus absorbs the photon \rightarrow excitation \rightarrow p or n emission

Energy threshold for lighter targets: above 10 MeV

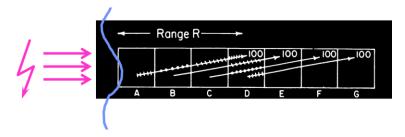

Does not happen for 6 MV Linacs

At Linacs with photon energies > 10 MV: can produce radioactive materials and is therefore a radiation protection concern

Reaktion	Schwelle (MeV)	Tochternuklid	Zerfallsart	$T^{1/_{2}}$	E_{γ} (keV)
¹² C(γ,n)	18,7	¹¹ C*	β+,ЕС	20,4 min	511
$^{14}N(\gamma,n)$	10,5	¹³ N*	β+	9,96 min	511
$^{16}\mathrm{O}(\gamma,n)$	15,68	¹⁵ O*	β+,ЕС	122 s	511
$^{16}\mathrm{O}(\gamma,2\mathrm{n})$	28,9	¹⁴ O*	$\beta+,\gamma$	70,6 s	511,2313
27 Al(γ ,n)	12,7	²⁶ A1*	β+,ΕС,γ	6,4 s	511,1810
63 Cu(γ ,n)	10,8	⁶² Cu*	β+,ЕС	9,73 min	511
$^{208}\text{Pb}(\gamma,n)$	7,9	²⁰⁷ Pb	stabil	-	-
¹² C(γ,p)	16,0	¹¹ B	stabil	-	-
¹⁶ O(γ,p)	12,1	^{15}N	stabil	-	-
27 Al (γ,p)	8,3	$^{26}{ m Mg}$	stabil	-	-
⁶³ Cu(γ,p)	6,1	⁶² Ni	stabil	-	-
²⁰⁸ Pb(γ,p)	8,0	²⁰⁷ Tl*	ß -	4,8 min	-

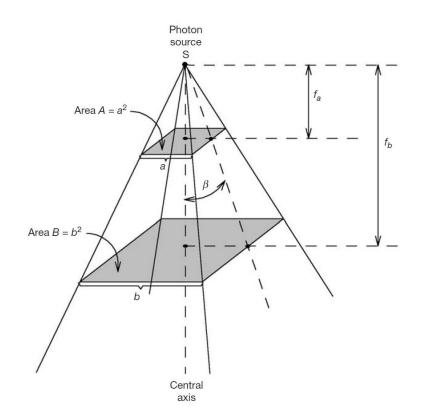


Interim Summary: photon interaction with matter



Photon depth dose curves

Build-up region:


Build-up of secondary electron equilibirum

- Secondary e- are forward directed
- Much less secondary e- in air than in water

Some terminology: divergent photon beam

Photon fluence

$$\phi = \frac{\mathrm{d}N}{\mathrm{d}A}$$

=Number of photons that enter a cross-sectional area dA

Energy fluence

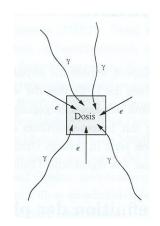
$$\Psi = \frac{\mathrm{d}E}{\mathrm{d}A}$$

=Amount of energy crossing a unit area dA

Inverse square law

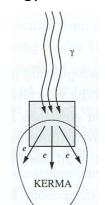
$$\frac{\phi_A}{\phi_B} = \frac{B}{A} = \frac{b^2}{a^2} = \frac{f_b^2}{f_a^2}$$

The photon fluence is inversely proportional to the square of the distance from the source



Some terminology

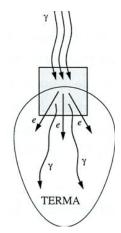
Absorbed dose [Gy]


KERMA [Gy]

Kinetic Energy Released in Material

$$D = \frac{d\bar{\varepsilon}}{dm} = \frac{1}{\rho} \frac{d\bar{\varepsilon}}{dV}$$

 $\bar{\epsilon}$: mean Energy absorbed in the mass element dm

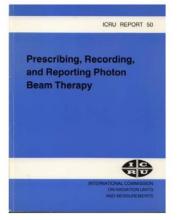


$$K = \frac{dE_{tr}}{dm} = \frac{1}{\rho} \frac{dE_{tr}}{dV}$$

E_{tr}: Energy transferred to **secondary electrons** within the mass element dm

TERMA [Gy]

Total Energy Released in Material



$$T = \frac{dE}{dm} = \frac{1}{\rho} \frac{dE}{dV}$$

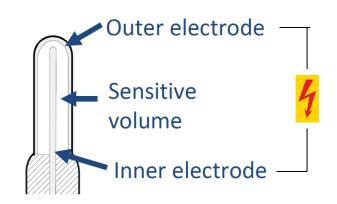
KERMA plus Energy of the photons exiting the mass element

Absorbed dose

Absorbed Dose Determination in External Beam Radiotherapy
An international Code of Practice for Desirantly Based on Standards of Absorbed Dose to Water Special Specia

(INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 2000

The generally accepted quantity measured to predict the effect of radiation therapy is the


Absorbed Dose to Water D

$$D = \frac{\text{Energy Absorbed [J]}}{\text{Mass of Absorber [kg]}} \quad [Gy]$$

Dose measurement with ionization chambers

Determination of absorbed dose (to water!) with an air-filled ionization chamber

Theoretical calculation:

$$D = \frac{\text{Charge measured}}{\text{Air Mass}} \cdot \text{Energy to produce an ion pair } \cdot \text{Conversion factor (air to water)}$$

In practice:

Calibration of chambers in ⁶⁰Co beams (reference beam quality) by a Primary / secondary standard dosimetry laboaratory (water calorimetry)

D =Charge measured · Chamber calibration factor (dose in water)

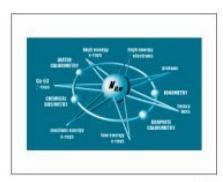
Practical dosimetry: correction factors

Dosimetry protocols: AAPM TG-51, IAEA TRS-398, DIN 6800-2, NCS-18, ...

$$D_{w,Q} = M_Q N_{D,w,Q_0} k_{Q,Q_0}$$
 with

 $D_{w,0}$: absorbed dose to water

 M_0 : corrected reading of the dosimeter in beam quality Q


 N_{D,w,Q_0} : absorbed-dose-to-water calibration coefficient at Q_0 (60Co)

 $k_{\mathcal{Q},\mathcal{Q}_0}$: beam-quality correction factor

Additional correction factors for:

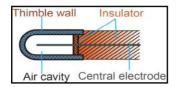
- Chamber properties, air pressure and temperature
- Non reference-conditions (small fields, plan-specific, ...)
- Magnetic fields (MR-Linacs)

• ..

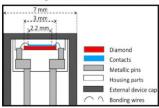
TECHNICAL REPORTS SERIES No. 398

Practical dosimetry with ionization chambers

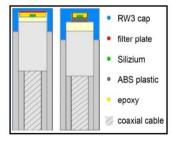
Different ionization chamber types in clinical use, just some examples:


www.ptwdosimetry.com

→ Numerous other models and types out there, for lots of different reasons / use cases

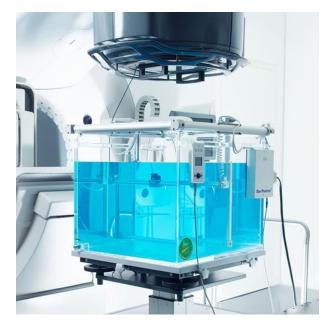


Choice of the right detector


Luftgefüllte lonisationskammern

Synthetischer Diamant

Dioden


Detektortype	PTW Semiflex 31010	PTW Semiflex 31016
Nominales Messvolumen [cm³]	0,125	0,016
Messvolumendichte [g.cm ⁻³]	1,225 x10 ⁻³	1,225 x10 ⁻³
Dimensionen des Messvolumens	Radius: 2,75 mm	Radius: 1,45 mm
Differisionell des iviessvolufferis	Länge: 6,5 mm	Länge: 2,9 mm
Anwendungsfelder (laut der	3x3 cm ² bis 40x40	2x2 cm ² bis 30x30
Hersteller)	cm ²	cm ²
Betriebsspannung [V]	400	400

Detektortype	PTW E-Diode 60017 (nicht geschirmte Diode)	PTW P-Diode 60016 (geschirmte Diode)	PTW microDiamond 60019
Nominales Messvolumen [mm³]	0,03	0,03	0,004
Messvolumendichte [g.cm ⁻³]	2,32	2,32	3,51
Dimensionen des Messvolumens	Radius: 0,56 mm Dicke: 30μm	Radius: 0,56 mm Dicke: 30μm	Radius: 1,1 mm Dicke: 1µm
Anwendungsfelder (laut der Hersteller)	1x1 cm ² bis 10x10 cm ²	1x1 cm ² bis 40x40 cm ²	1x1 cm ² bis 40x40 cm ²
Betriebsspannung [V]	0	0	0

Absolute vs. Relative Dosimetry

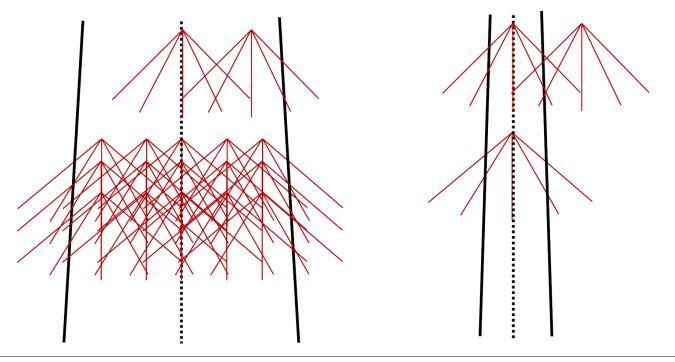
Water tank

www.iba-dosimetry.com

Both performed in a water tank, but....

Absolute dosimetry:

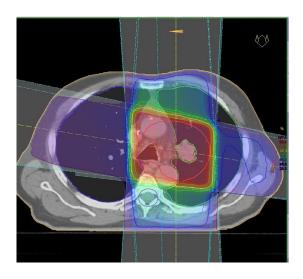
Determination of a point dose under reference conditions and calibration of the Linac monitor chamber


Relative dosimetry:

Measurement of dose profiles that characterize the treatment beam of a linac

Small photon fields

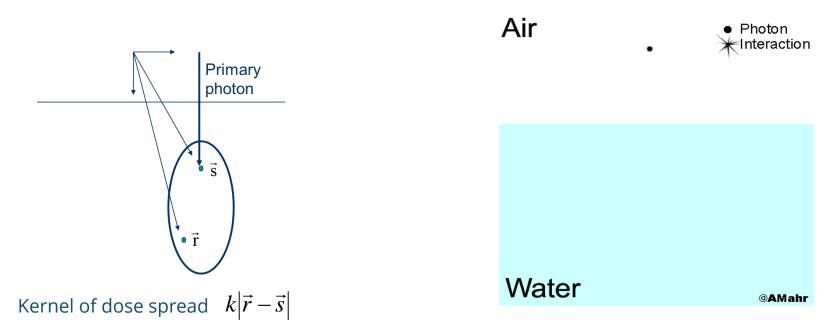
- A photon treatment field can be considered small if no <u>lateral charged particle equilibrium</u> is present on the <u>central axis</u> any more
- "outside" directed electron transport dominates



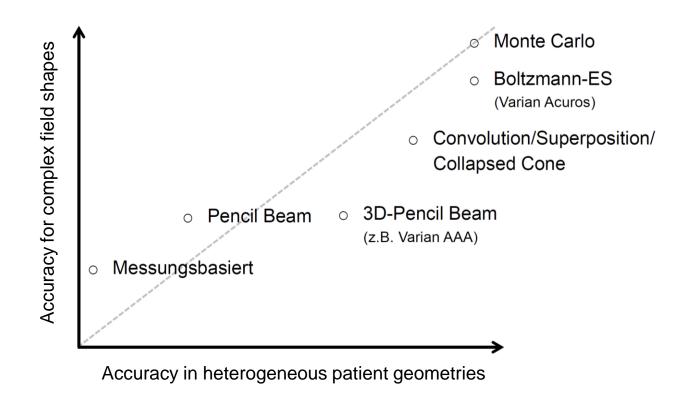
Dose calculation

Remember: With photons, you have

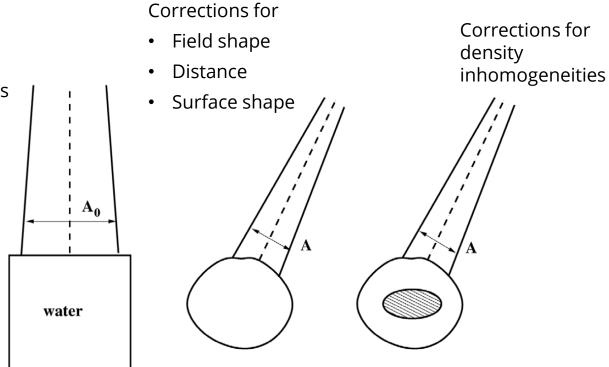
- Indirect ionization
- Scattering
- Secondary electrons



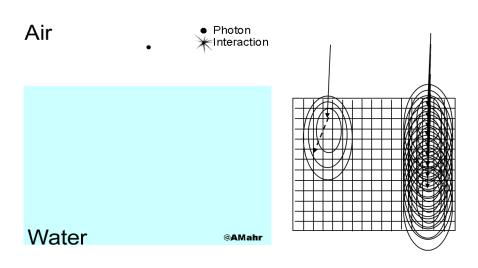
→ Need a model for the dose spread after a primary interaction


Dose calculation: point spread kernel

ightarrow Dose deposition in voxel \vec{r} caused by photon interaction in voxel \vec{s}

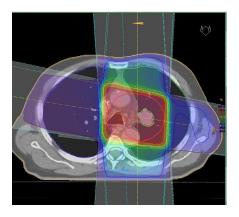

Dose calculation algorithms

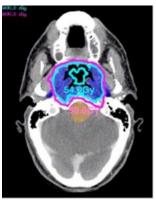
Measurement based dose calculation

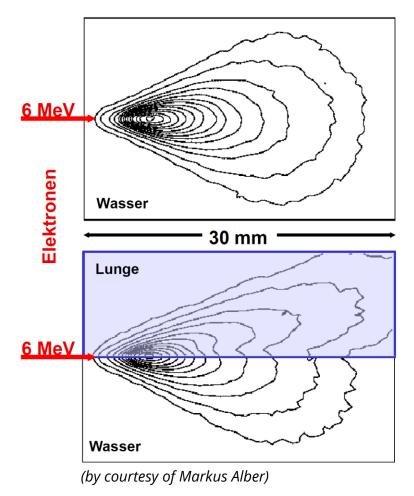

Tabulation of measurements in a water tank for different field sizes

Pencil beam dose calculation

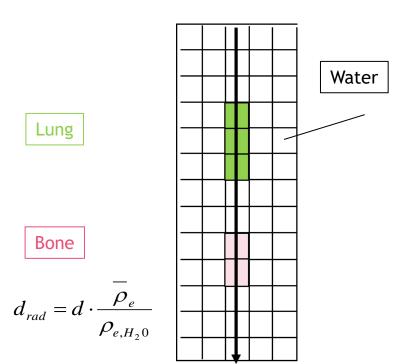
Pre-calculation of absorbed dose along central axis for "pencil" beam




Dose calculation for broad beam: superposition of pencil beams

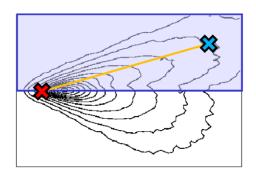


Inhomogeneity correction

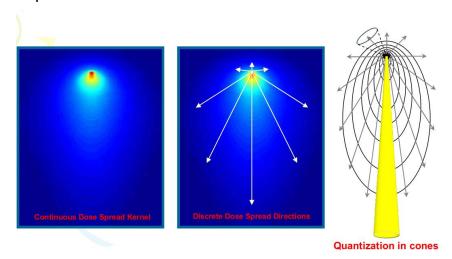


Inhomogeneity correction: Pencil Beam

Water equivalent depth

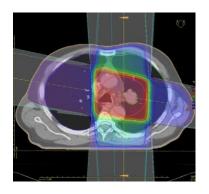

→ pencil beam kernel stretching with inverse mean density

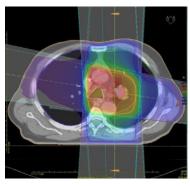
Inhomogeneity correction: Collapsed Cone

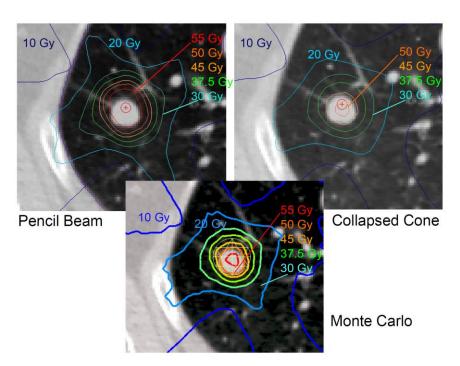

Collapsed cone dose calculation: Kernel based algorithms

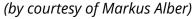
- 1) Calculate mean density along the line
- 2) Stretch kernel according to inverse mean density

"Collapsed" cone:

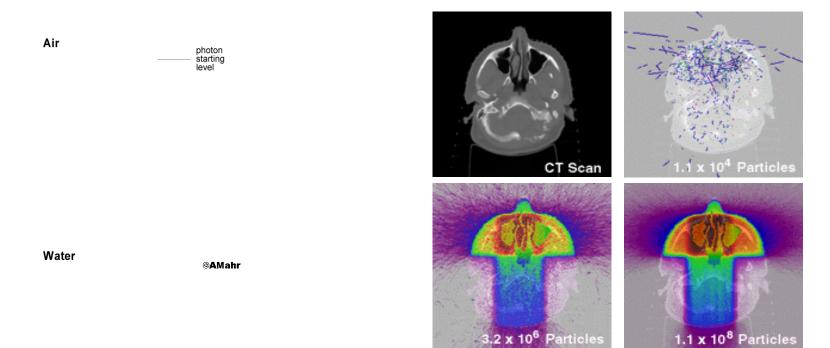

Density correction along central line is representative for one sector / cone



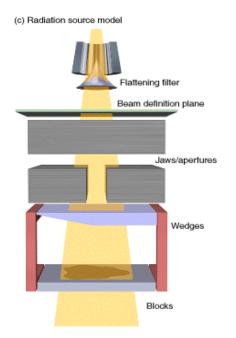


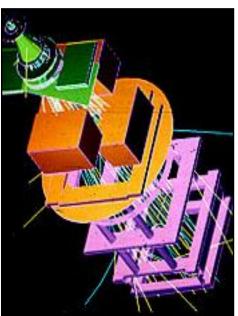

Pencil beam vs. Collapsed cone dose calculation

Pencil beam overestimates tumor dose in the lung



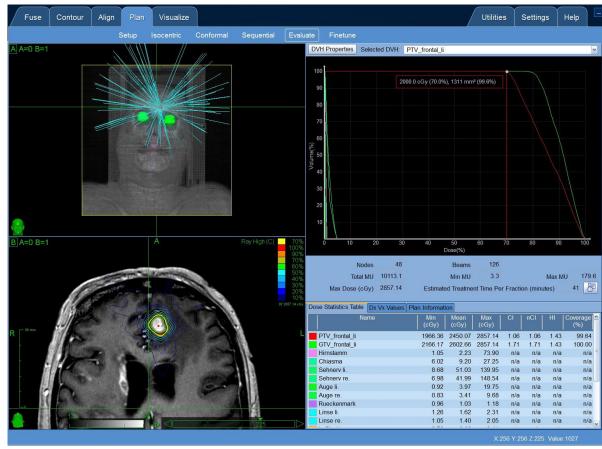
Monte Carlo dose calculation


Simulation of stochastic nature of photon interactions

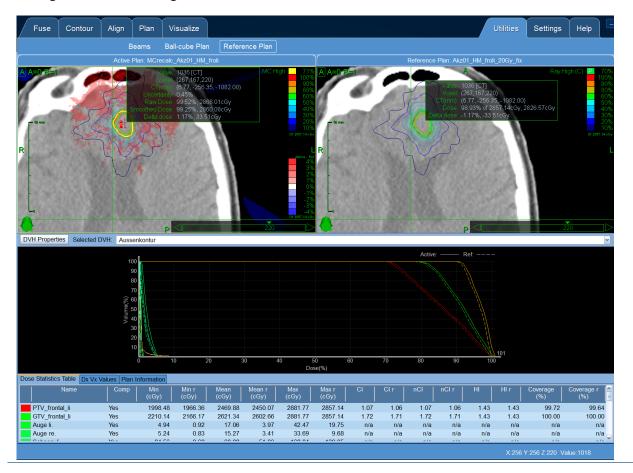


Monte Carlo simulation

Full Monte Carlo Linac Simulations need a lot of details, need to model all elements of the treatment head with high detail



Alternative: pre-calculated phase space, Full simulation starts at a certain point, for example before the Multi-Leaf Collimator, or in the patient

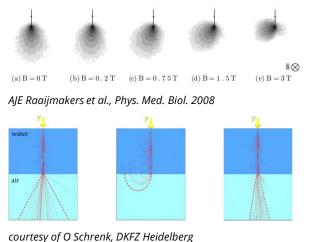

Do you always need Monte Carlo?

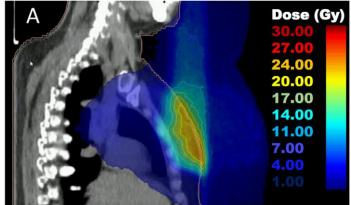
Do you always need Monte Carlo?

Here:

very simple, measurement based dose calculation

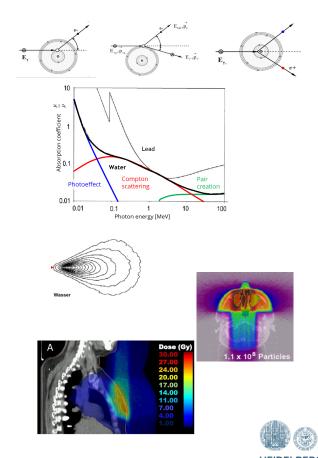
Shape of the dose distribution is defined by <u>irradation geometry</u> of many thin "needle" beams


No clinically relevant difference (in homogeneous areas of the body, i.e., intracranial)



Do you always need Monte Carlo?

MR-Linac: static magnetic field deflects secondary electrons



M. Nachbar et al./Radiotherapy and Oncology 145 (2020) 30–35

Summary

- Interactions of high energy photons with matter
- Attenuation
- Dose deposition: secondary electrons
- Depth dose curves
- Dose quantities
- Dose measurement
- Models of dose deposition: dose calculation

