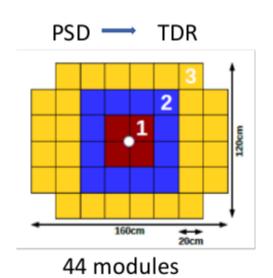
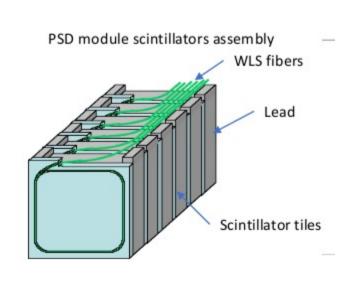
FSD plans for TDR

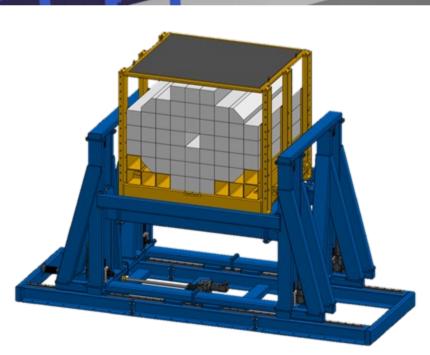
Petr Chaloupka

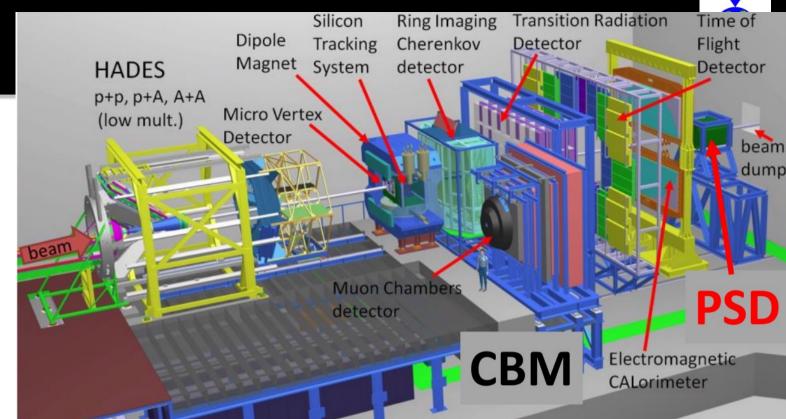
Czech Technical University in Prague

For FSD group






Before FSD

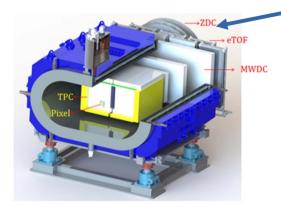

PSD – Proton Spectator Detector

- Sampling calorimeter with SiPM readout
- Spectator detection in the beam energy range of Eb = 2 35 AGeV
- Reaction plane and centrality determination
- Project canceled in 2022
 - Mechanical positioning platform already delivered to GSI

Forward Spectator Detector (FSD)

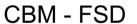
Proposing scintillator hodoscope:

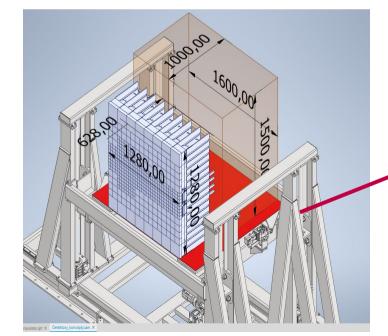
- Similar in function to HADES FWALL or CEE- ZDC
- Detecting charged hadrons in forward rapidity
- Increasing granularity closer to the beam
- Sensitive to charged particles
 - protons and spectator fragments
- Centrality and event plane measurements
 - independent of mid-rapidity

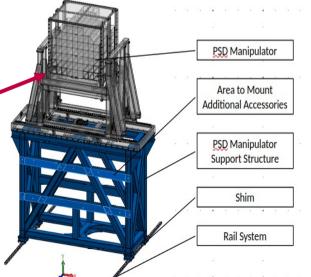

Design consideration:

- Radiation hardiness
 - fast readout by PMT
- Based on proven technology, reuse maxim knowledge gained from PSD
 - DiRICH based readout
 - software simulation stack
- Reasonable budge
 - plastic scintillators

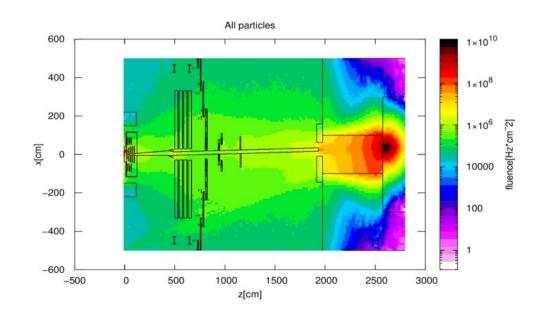
FSD project and group

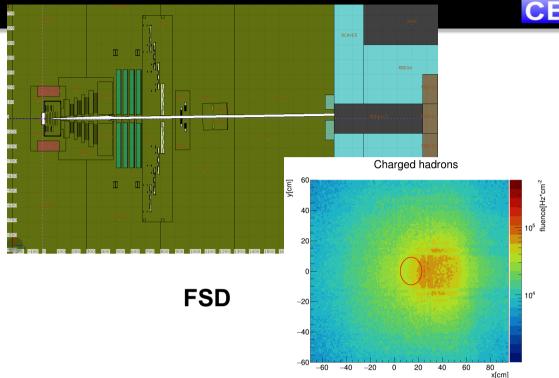

- Official project since 2023
- Collaborators: Czech Tech. Uni, Nuclear Physics Inst. Rež, GSI, Bochum University

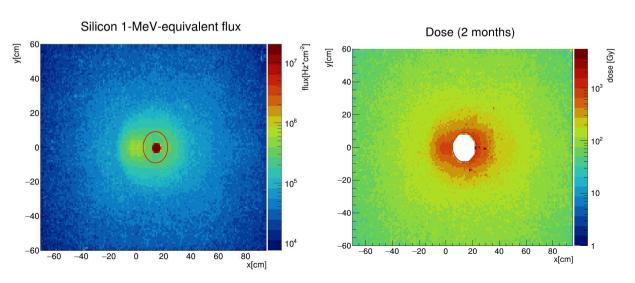

CEE-ZDC



HADES hodoscope




Bacgkround studie


CBM

Extensive FLUKA studies od particle flux and doses

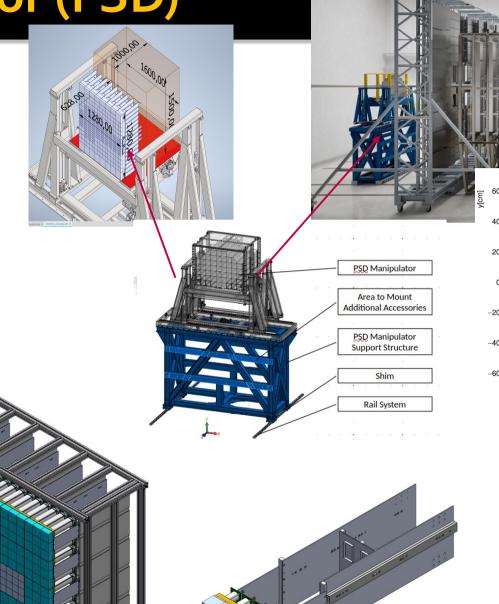
- Charged particle flux up to 10⁵/(cm²s⁻¹) for 10 Mhz Au+Au
- Expected dose to scintillator max 10kGy/2months
 - exchanged after one year
- Increased granularity around beampipe
 - max occupancy ~20% per channel
- Neutron flux $\sim 10^{11}$ 1MeV eq/2months
 - too harsh for SiPM
 - considering shielding of electronics

Forward Spectator Detector (FSD)

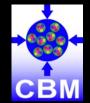
Charged hadrons

171 canals: 7.3x7.3 cm 144 canals: 5.5x5.5 cm 25+10? canals 4.4x4.4 cm

Basic design:


- 6x6 array of 22cm module blocs
 - different granularity 5x5,4x4,3x3
- Total of ~350 scintillator pads+PMT
- PMT available as Bochum in-kind contribution
 - 2" inch Philips XP2020
 - 1" Hamamatsu R1924

Readout via DiRICH


- GSI in-house solution, shared solution with RICH
- Tested up to 1Mhz hit rate

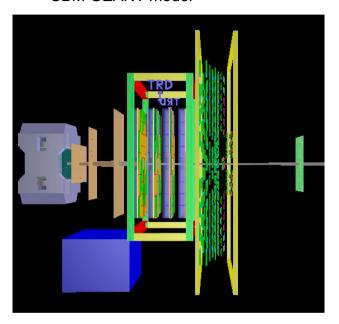
Mechanical:

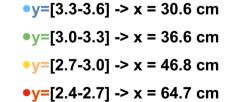
- Modular design with removable sections
- Reusing FSD manipulator
- Support platform will be designed
- Optimized design of beam pipe to minimize background

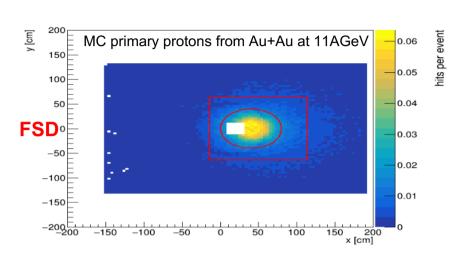
Event plane reconstruction with FSD

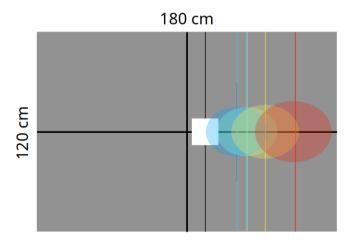
Goal – event plane reconstruction from spectators

Independent from flow measured at mid-rapidity


Challenge – dipole magnetic field


- Different rapidities centered in different x position due to the magnetic field
- Non uniform acceptance
 - mixing of rapidity, pt, phi
 - depends on charge/mass ratio
- FSD only dE/dx information

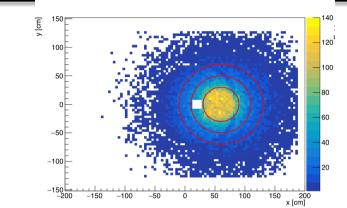

Flow extraction using Q_N vector framework

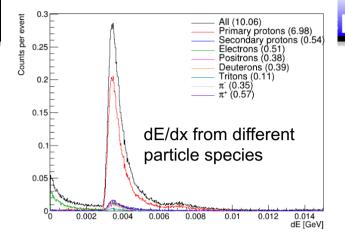

- Integrated with CBM Analysis framework
- 3 or 4 subevent correlations
- Correction for non-uniform acceptance
 - recentering, twist, rescaling
- Q vector (subevent selection) must be done carefully
 - correlated background can induce bias
 - no PID and tracking in forward direction

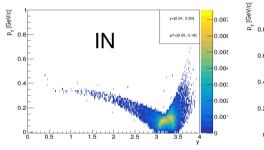
CBM GEANT model

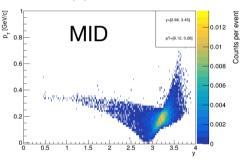
Event plane reconstruction with FSD

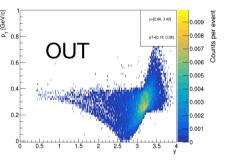
Goal – event plane reconstruction from spectators

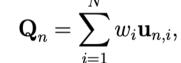

Independent from flow measured at mid-rapidity

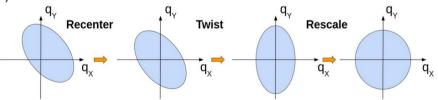

Challenge – dipole magnetic field


- Different rapidities centered in different x position due to the magnetic field
- Non uniform acceptance
 - mixing of rapidity, pt, phi
 - depends on charge/mass ratio
- FSD only dE/dx information

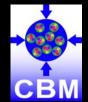

Flow extraction using Q_N vector framework


- Integrated with CBM Analysis framework
- 3 or 4 subevent correlations
- Correction for non-uniform acceptance
 - recentering, twist, rescaling
- Q vector (subevent selection) must be done carefully
 - correlated background can induce bias
 - no PID and tracking in forward direction





$$\mathbf{u}_n = \{\cos n\varphi, \sin n\varphi\}, \quad \mathbf{Q}_n = \sum_{i=1}^{N} w_i \mathbf{u}_{n,i},$$


Event plane resolution:

$$R_{n,\alpha}^{A} = \sqrt{\frac{\langle Q_{n,\alpha}^{A} Q_{n,\alpha}^{B} \rangle \langle Q_{n,\alpha}^{A} Q_{n,\alpha}^{C} \rangle}{\langle Q_{n,\alpha}^{B} Q_{n,\alpha}^{C} \rangle}},$$

V1:

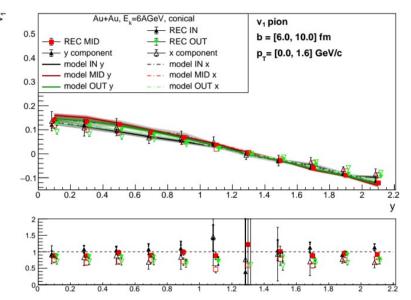
$$v_{n,\alpha} = \frac{2\langle q_{n,\alpha}Q_{n,\alpha}\rangle}{R_{n,\alpha}},$$

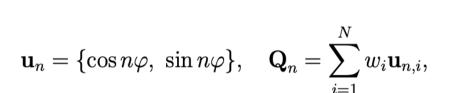
Event plane reconstruction with FSD

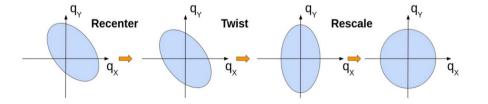
v₁ from Qn vector

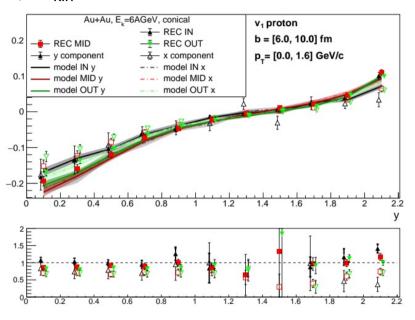
- Separately using three subevents and x, y component >
 - 6 independent (technically) values
- Handle on systematics

MC input x simulation agreement


- Event plane extracted from spectator protons
 - at lower collision subevent from fragments
- Systematics under control
 - difference likely due to simplified subevent selection in MC


Extensive studies of systematics


- Background from other detectors
- Correlated background from fragments passing traversing beampipe wall
- Beam divergence effect


FSD will provide independent measurement of event plane from forward rapidity spectators.

DCM-QGS-SMM Au+Au, Ekin=6AGev

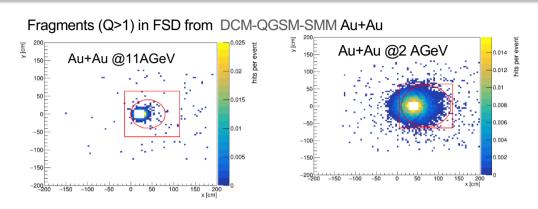
Event plane resolution:

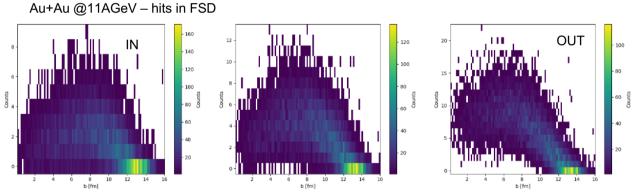
$$R_{n,\alpha}^{A} = \sqrt{\frac{\langle Q_{n,\alpha}^{A} Q_{n,\alpha}^{B} \rangle \langle Q_{n,\alpha}^{A} Q_{n,\alpha}^{C} \rangle}{\langle Q_{n,\alpha}^{B} Q_{n,\alpha}^{C} \rangle}},$$

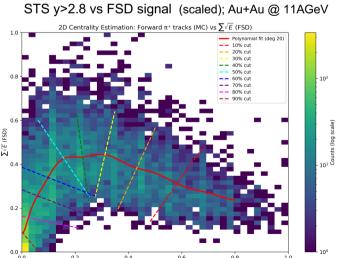
V1:

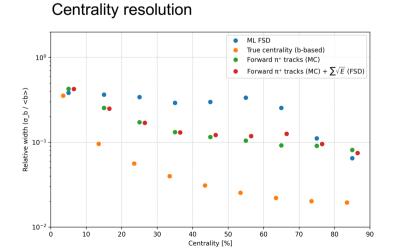
$$v_{n,\alpha} = \frac{2\langle q_{n,\alpha}Q_{n,\alpha}\rangle}{R_{n,\alpha}},$$

Centrality measurement with FSD


Centrality from FSD


- Using forward fragments crucial for mid-rapidity fluctuation measurements
- Obtained from number of charged particles in FSD
- Insensitive to neutrons
- Correlation between detector regions (subevents)
- Studied classical cut selection and machine learning methods

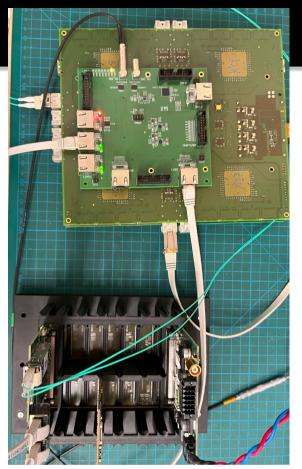

Effect of central beam hole

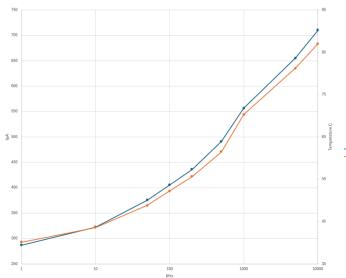

- Must accomodate beam + halo
 - not fully accounted for in past PSD studies
- Loss of fragment with Q/m close to beam particles
 - model dependent in simulation
- Driven by beam divergence
 - intrinsic beam divergence (<5 mrad)
 - 2 mrad from elastic statering in target

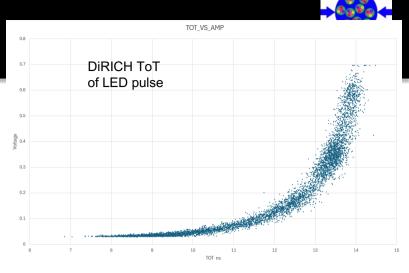
FSD will be able to provide an independent measurement of collision centrality.

Electronics and readout

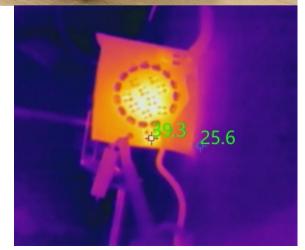
Leveraging existing electronics


- Use of the DiRICH readout boards originally the TRBNet version
- Advantage: already implemented in the CBM DAQ
- Cheap, scalable and reliable technology
- Tests started with version with concentrator, with plan to go towards standalone version of DiRICH5


Challenges


- Possible issues in high radiation environment near the beam dump
 - readout boxes at the cave ground level
- High rate in the central channels
 - current version of DiRIch tested up to 1Mhz


New PMT dividers

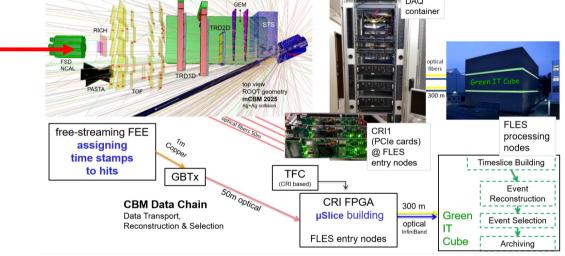

- Optimized for timing, fast readout, power dissipation and small, footprint
- Lab and cosmics testing
 - XP2020 ≈ 150ps
 - R1924 ≈ 300ps
- High-rate testing for power dissipation

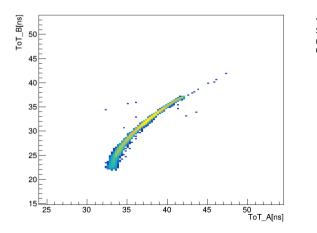
Testing @ mCBM

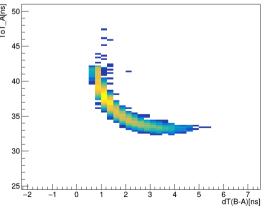
mCBM – full system test with SIS18 beam

- Test and pre-series detector components
- Including FSD test module
- Realistic downscaled version CBM DAQ with free-streaming readout
 - High-rate test

FSD + DiRICH tested


- Smooth inclusion in RICH data stream
- Gaining experience with free streaming readout
- Work on optimization of timing and charge resolution


Successful integration of FSD readout into CBM DAQ

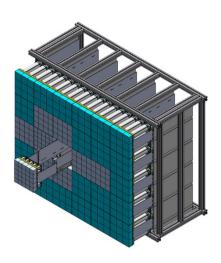

Potential upgrade to DOGMA DAQ

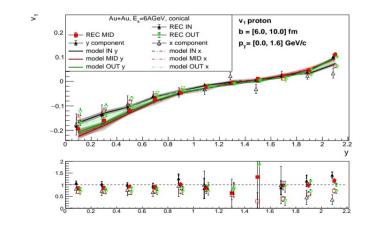
- Standalone concept of DiRICH with optical communication over Ethernet
- Improved radiation hardness and self recovery

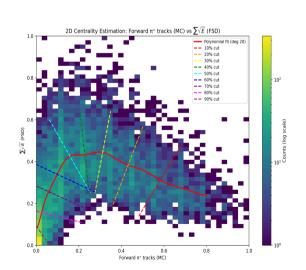
Towards TDR

Planned content of the TDR:

Expected physics performance


- Operational environment studied
- Expected physics performance evaluated
 - Event plane and centrality measurement from forward spectators
 - Study of systematic effects


Detector design concept


- Basic concept developed
- Mechanical design advancing
 - detector modules, support
- Electronics
 - based on proven technologies
 - test results

Time plan:

- First draft ready
- Collaboration review January 2026
 - finalizing performance studies for centrality determination
- Submission to ECE February/March 2026

After TDR

Further R&D

- Pre-series modules
 - testing and optimization
 - mCBM commissioning runs
- Electronics
 - Speed and resolution optimization
- Design support frame

Milestone	2026	2027	2028		
TDR submission	January				
Electronics CDR submission	Q2				
	Design finalization				
Detector module PRR	Q4				
Electronics PRR	Q4				
Mechanical support → PRR	Q4				
Procurement					
TRB + ROBs → FAT		Q2			
Scintillator modules → FAT		Q1			
Support → FAT → SAT		Q3			
Assembly					
Detector modules → FAT		Q3			
Assembly at FAIR → SAT			Q1		

Available resources

Secured ~124k EUR from Czech Ministry of Education

~500k FAIR budget (previously as PSD in-kind, Moscow)

upon FS+ approval

In-kind from FZ Jülich (PMTs)

		Sum	ca. 37 Mio. €	
9	S&B	TGA CBM cave risks	7 Mio. €	2024/2025
8	S&B	TGA CBM cave	14,3 Mio. €	Q2 2024
7	ACC	CBM beamline vacuum comp.	2,3 Mio. €	Q4 2024
6	ACC	CBM beamline magnets	4,2 Mio. €	Q4 2024
5	EXP	СВМ МИСН	2,0 Mio. €	Q3 2025
4	EXP	CBM RICH	1,0 Mio. €	Q2 2025
3	EXP	CBM PSD	0,5 Mio. €	Q4 2024
2	EXP	CBM Silicon Tracker System	0,9 Mio. €	Q3 2024
1	EXP	CBM SC Dipole magnet	4-5 Mio. €	July 2023

Estimated costs (w/o spares)

Modules: 6ok (cable track tbd.)

Power and DAQ: 250k

Mechanics: 250k

NCAL not included