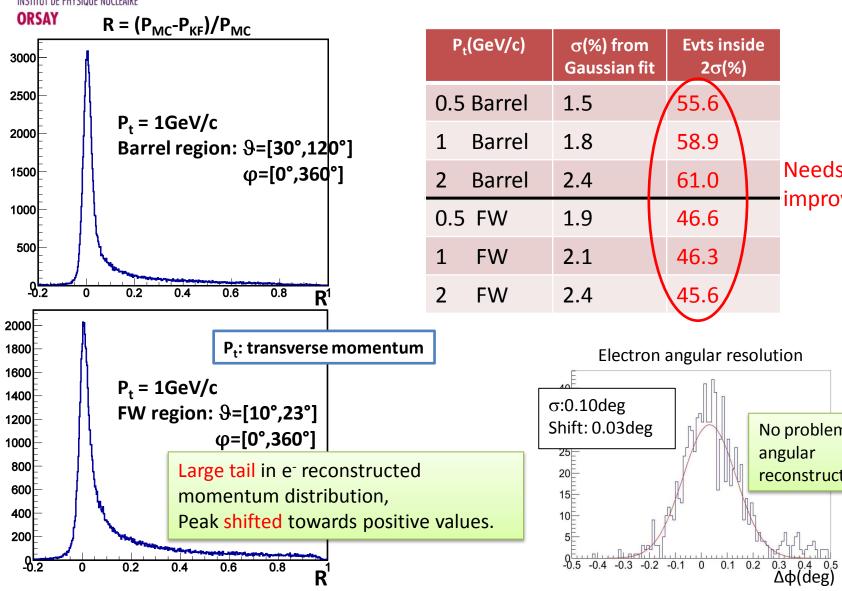


A new method to improve the electron momentum reconstruction with PANDARoot

Binsong MA
Institut de Physique Nucléaire, ORSAY
Collaboration meeting at GSI, 26/06/2013



Outline

- The existing problems of electron reconstruction.
- My proposal: use the measured Bremsstrahlung γ energy in the EMC(Electromagnetic Calorimeter).
- Two cases for this method:
 - case 1: separated e⁻/γ bumps
 - case 2: merged e⁻/γ bumps. (New)
- Preliminary results.
 - Barrel
 - Forward endcap. (New)
- Outlook

Electron momentum resolution

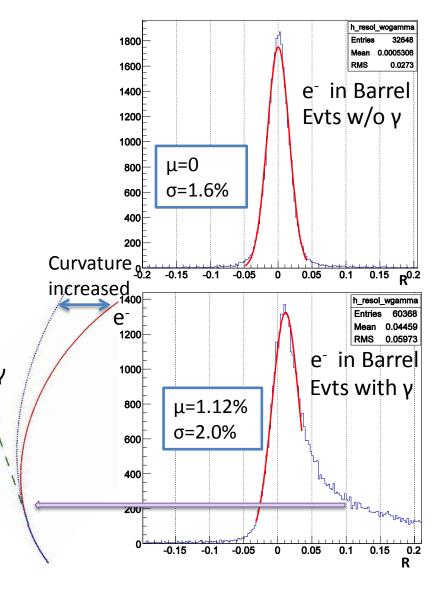
Needs to be

improved

No problem for

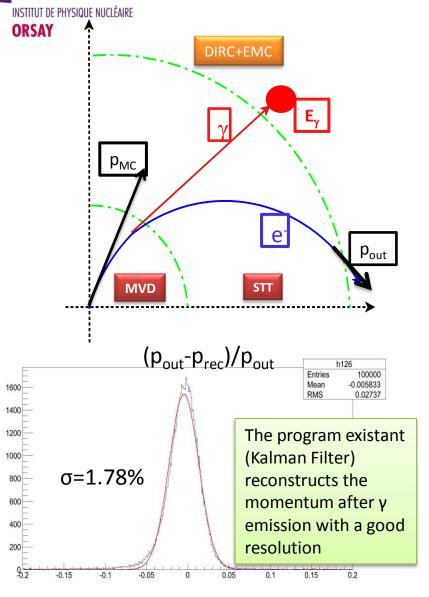
reconstruction

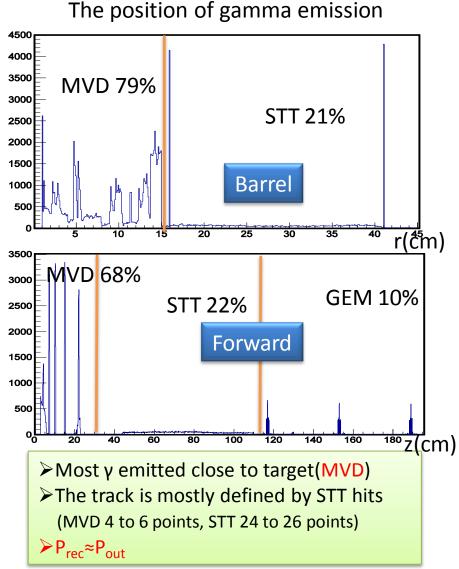
angular



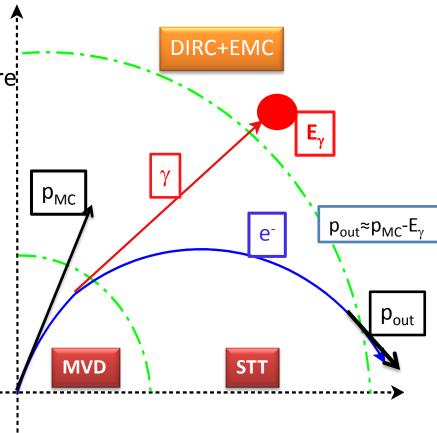
e⁻ resolution and γ emission

P _t of e ⁻		Evts with γ	Evts w/o γ
0.5GeV/c	Barrel	61.9%	38.1%
1GeV/c	Barrel	65.5%	34.5%
2GeV/c	Barrel	68.9%	31.1%
0.5GeV/c	FW	81.1%	18.9%
1GeV/c	FW	84.0%	16.0%
2GeV/c	FW	86.5%	13.5%




The problem of momentum resolution is due to the emission of photon.

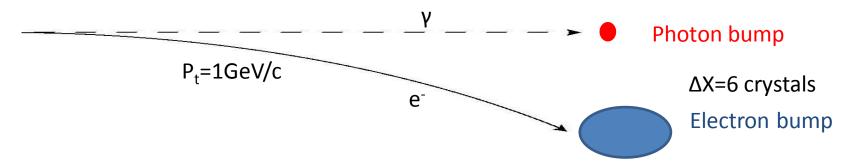
e⁻ momentum reconstruction with γ emission

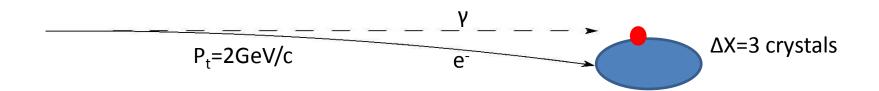


My proposal: use the γ energy from EMC

Handle the problem event by event

The reconstructed momentum
 p_{rec} ≈p_{out} (momentum of the electron before the DIRC)

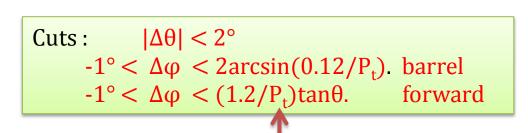

- If a γ is emitted before the DIRC: $p_{out} \approx p_{MC} - E_{\gamma}$ (γ is emitted in the same direction as e^{-})
- •Searching the associated Bremsstrahlung γ s in the EMC.(ΣE_{γ})
- Calculate: $\mathbf{p}_{corr} = \mathbf{p}_{rec} + \sum \mathbf{E}_{\gamma(i)}$



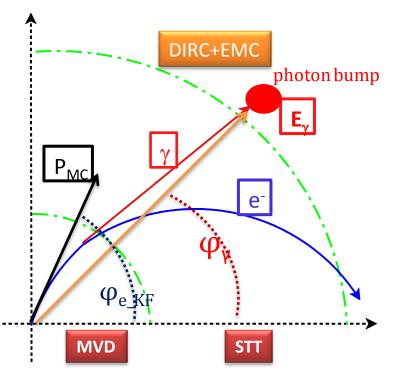
Looking for the Bremsstrahlung γ in EMC

 Case one: the clusters or bumps of e⁻ and γ can be well distinguished.

Case two: γ and e⁻ bumps are merged.

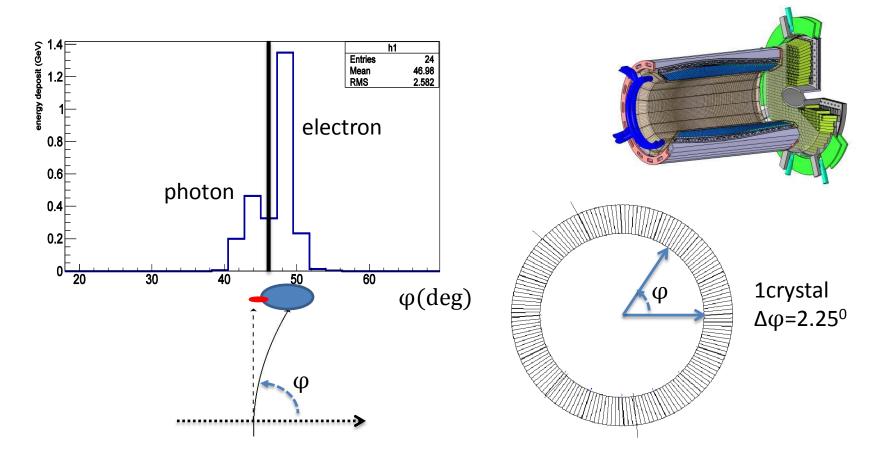


For an electron event both cases are considered in parallel.



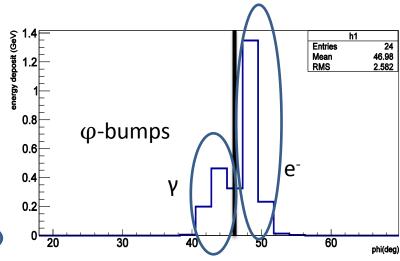
Bremsstrahlung γ selection algorithm for separated e⁻/ γ bumps

- → Look for a photon bump in EMC: (a neutral candidate)
- \rightarrow Selection of photons emitted before DIRC : Using $\Delta\theta$ and $\Delta\phi$:


Maximum e⁻ deviation angle

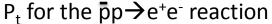
y selection algorithm for merged e⁻/γ bumps

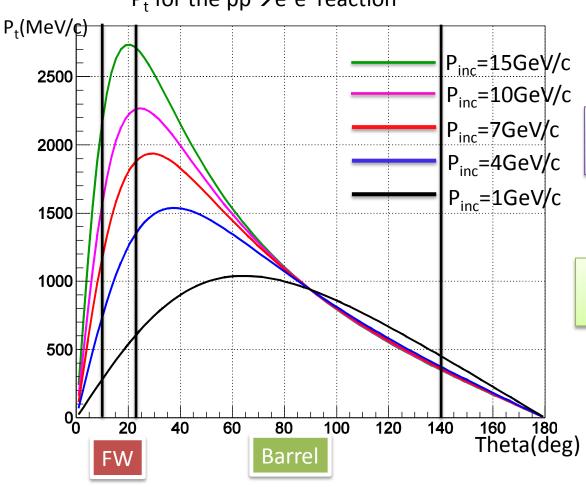
• Sum of energy deposits in crystals at a given φ .


y selection algorithm for merged e⁻/γ bumps

Looking for a φ -bump:

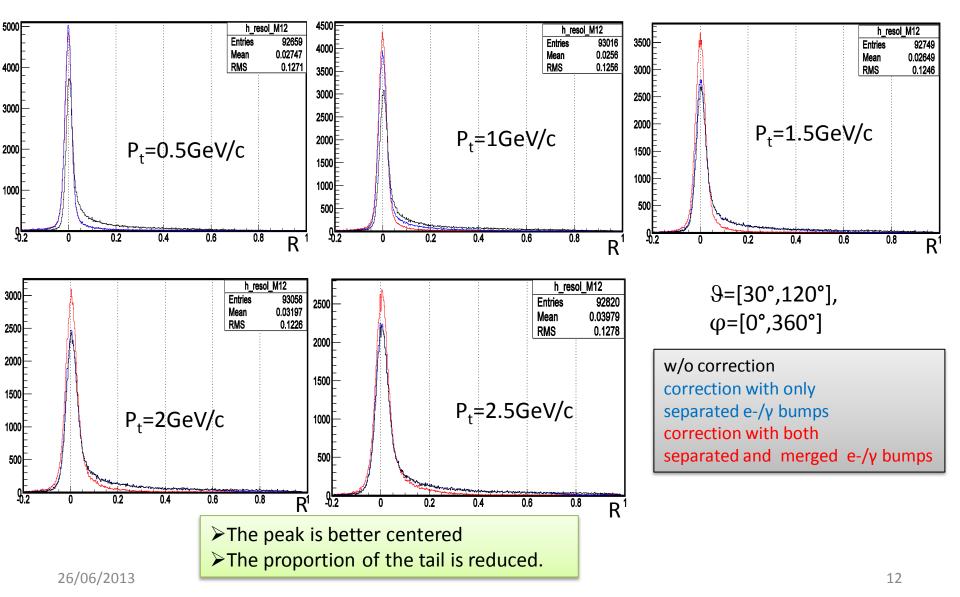
- Scan the bins of the energy deposit spectrum three by three, each bin i receives a code depending on N_{i-1}, N_i, N_{i+1}.
- φ -bumps are defined between two valleys (code =-2).
- The φ-bump at the right edge is considered as e⁻. The other φbumps are considered as photons.
- The split electron ϕ -bumps are also considered.
- $\mathbf{p}_{corr} = \mathbf{p}_{rec} + \Sigma \mathbf{E}_{\gamma(i)}$




code	cases
1	Rise
-1	Drop
0	Peak •••
-2	Valley •••

Kinematical considerations

Barrel: P_t < 2.8GeV/c


Forward: P_t <2.8GeV/c

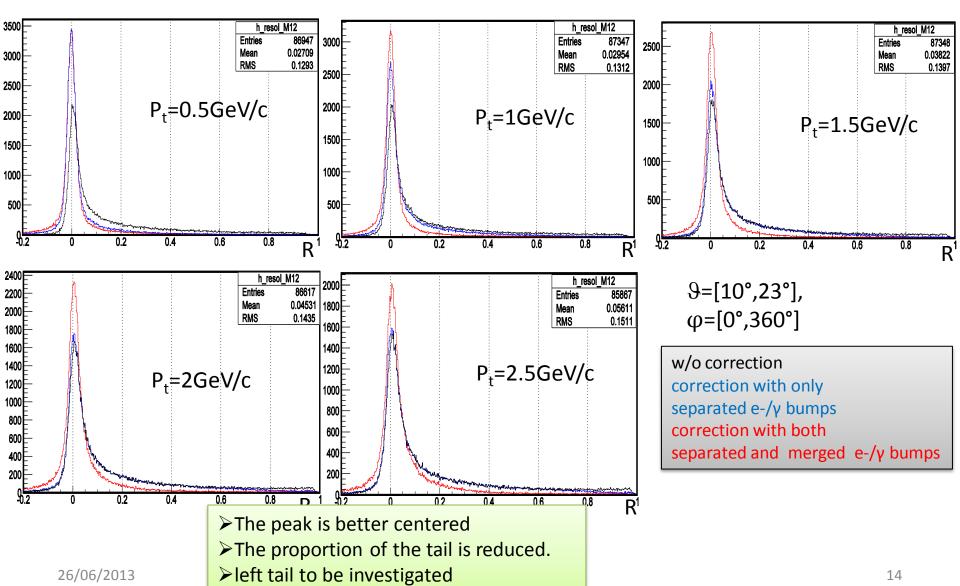
Simulations for 10⁵ e⁻

 $P_t = 0.5, 1, 1.5, 2, 2.5 \text{ GeV/c}$

Preliminary result for the electrons in the Barrel EMC region

Performance of the method for the momentum resolution (Barrel region)

		Gaussian fit		Proportion of evts
Electron Pt	case	σ	μ	inside 2σ
	w/o	1.5%	0.41%	55.6%
Pt=0.5GeV/c	First	1.6%	-0.14%	80.1%
	First+Second	1.6%	-0.12%	78.9%
	w/o	1.8%	0.48%	58.9%
Pt=1GeV/c	First	1.8%	-0.05%	72.3%
	First+Second	1.8%	-0.09%	79.5%
	w/o	2.2%	0.53%	59.1%
Pt=1.5GeV/c	First	2.2%	0.32%	63.7%
	First+Second	2.2%	0.09%	79.9%
	w/o	2.4%	0.60%	61.0%
Pt=2GeV/c	First	2.4%	0.50%	63.4%
	First+Second	2.5%	0.35%	77.5%
	w/o	2.7%	0.70%	61.0%
Pt=2.5GeV/c	First	2.6%	0.57%	62.7%
	First+Second	2.6%	0.53%	73.6%


First case:
only separated e-/γ
bumps
First+second case:
separated and
merged e-/γ bumps

Reduction of the shift.

Increase of number of events inside two sigma: $60\% \rightarrow 79\%$ (about 85% for muons) Efficiency of e⁺e⁻ selection (both in Barrel) increases by a factor ~ 1.75 .

Preliminary result for the electrons in the forward EMC Endcap region

Performance of the method for the momentum resolution (Forward Endcap region)

		Gaussian fit		Proportion of evts
Electron Pt	case	σ	μ	inside 2σ
	w/o	1.9%	0.83%	46.6%
Pt=0.5GeV/c	First	1.8%	-0.10%	67.5%
	First+Second	1.9%	-0.12%	69.5%
	w/o	2.1%	0.84%	46.3%
Pt=1GeV/c	First	1.8%	0.18%	54.8%
	First+Second	2.0%	0.17%	67.4%
	w/o	2.2%	0.93%	45.3%
Pt=1.5GeV/c	First	2.3%	0.62%	50.4%
	First+Second	2.1%	0.40%	62.5%
	w/o	2.4%	1.03%	45.6%
Pt=2GeV/c	First	2.4%	0.87%	48.1%
	First+Second	2.3%	0.59%	62.9%
	w/o	2.2%	0.93%	46.2%
Pt=2.5GeV/c	First	2.3%	0.62%	48.2%
	First+Second	2.1%	0.40%	58.2%

First case:
only separated e-/γ
bumps
First+second case:
separated and
merged e-/γ bumps

Reduction of the shift.

Increase of number of events inside two sigma: $46\% \rightarrow 65\%$ (about 80% for muons) Efficiency of e⁺e⁻ selection (one in Barrel, one in FW) increases by a factor ~ 1.9 .

Conclusions and outlook

- New method based on the photon detection in the EMC to correct electron Bremsstrahlung.
- Reduction of the tail of resolution peak. (33% --45% more events inside two sigma)
- Method valid for both Barrel and Forward Endcap regions and for P_t from 0.5 to 2.5 GeV/c.

Outlook:

- Check the problem of left tail in the FW case.
- Check the performance for positrons.
- \triangleright Check the gain in efficiency for $\overline{p}p->e^+e^-$ signal selection.
- \triangleright Impact on radiative corrections ($\overline{p}p->e^+e^-\gamma$).
- Implement this method in PandaRoot.