

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Update on the software trigger scheme

Donghee Kang

Institut für Kernphysik, Universität Mainz

- Introduction
- Test with full chain MC simulation
- Summary & Outlook

PANDA collaboration meeting, GSI, 25 Jun. 2012

Online Software Trigger

Ingredients for trigger algorithms

- Track reconstruction is the important key
- PID for charged/neutral track
- Event Shape variables
- Most of physics benchmark channels contain J/ψ , D^0 , D^{\pm} , D_s mesons, light Mesons (π^0,ϕ), baryons (Λ , Λ_c), l^+l^- pair
- Kinematic cuts, depends on each physics channel
- POCA / Vertex finding, if it is possible

Determination of events rate

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

GEMEINSCHAFT

- 15 selection algorithms according to resonances scan data/events in parallel
- For each algorithm data samples pass through invariant mass filtering

Determination of events rate

Test on software trigger scheme with full chain MC simulation

• EvtGen signal data and DPM background data using PANDAroot ver.oct12

$$\begin{split} \overline{p}p &\to X(3872) \to J/\psi\pi^{+}\pi^{-} \to l^{+}l^{-}\pi^{+}\pi^{-} \\ \overline{p}p \to e^{+}e^{-} \\ \overline{p}p \to \psi(4040) \to D^{*+}D^{*-} \to D^{0}\pi^{+}\overline{D}^{0}\pi^{-} \to K^{-}\pi^{+}\pi^{+}K^{-}\pi^{-}\pi^{-} \\ \overline{p}p \to \psi(4040) \to \phi\phi \to K^{+}K^{-}K^{+}K^{-} \\ \overline{p}p \to f(2230) \to \phi\phi \to K^{+}K^{-}K^{+}K^{-} \\ \overline{p}p \to \tilde{\eta}_{c1}\eta \to \chi_{c1}\eta\pi^{0}\pi^{0} \to J/\psi\gamma\eta\pi^{0}\pi^{0} \to e^{+}e^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma \\ \overline{p}p \to \tilde{\eta}_{c1}\eta \to \chi_{c1}\eta\pi^{0}\pi^{0} \to \phi\pi^{\pm}\phi\pi^{\mp}\pi^{0} \to K^{+}K^{-}\pi^{\pm}K^{+}K^{-}\pi^{\mp}\gamma\gamma \\ \overline{p}p \to D_{s}^{\pm}D_{s}^{0^{*\mp}} \to D_{s}^{\pm}D_{s}^{\mp}\pi^{0} \to \phi\pi^{\pm}\phi\pi^{\mp}\pi^{0} \to K^{+}K^{-}\pi^{\pm}K^{+}K^{-}\pi^{\mp}\gamma\gamma \\ \overline{p}p \to \tilde{\eta}_{c1}\eta \to \overline{D}^{*0}D^{0}\eta \to \overline{D}^{0}\pi^{0}D^{0}\eta \to K^{-}\pi^{+}\pi^{0}K^{+}\pi^{-}\pi^{0}\pi^{0}\eta \\ \overline{p}p \to \overline{\Lambda}_{c}\Lambda_{c} \to \overline{p}K^{+}\pi^{-}pK^{-}\pi^{+} \\ \overline{p}p \to h_{c}(3526) \to \eta_{c}\gamma \to \gamma\gamma\gamma\gamma \end{split}$$

NES GUTENBERG

DPM background

- inelastic event only corresponding to ~ 10 MHz rate
- min beam mom. = 2.230 GeV/c max beam mom. = 5.474 GeV/c
- 22 data sets
- online tracking resolution and PID efficiency are the same as like offline values
- apply global PID probability for each charged track

$$Prob.(k) = \frac{\prod_{i} Prob_{i}(k)}{\sum_{j} \prod_{i} Prob_{i}(j)}$$

 $i = subdetectors$
 $j = e, \mu, \pi, K, p$
 $k = particle$

PID selection :

loose

Prob. $(e, \mu) > 0.01$, Prob. $(\pi, p) > 0.1$, Prob.(K) > 0.2

- tight

Prob. $(e, \mu, \pi, K, p) > 0.5$

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

$\overline{p}p \to h_c(3526) \to \eta_c \gamma \to \gamma \gamma \gamma$

INES GUTENBERG

UNIVERSITÄT

$E_{EMC} > 10 \text{ MeV}$ for γ candidates

Blue distribution : MC truth matched reconstructed η_c mass Red distribution : reconstructed η_c from the combination of all neutral candidates

$$\varepsilon = \frac{N_{rec.event,MC}}{N_{gen.event,MC}}$$

OHANNES GUTENBERG

UNIVERSITÄT MAIN

 $N_{rec.event,MC}$ is the number of selected signal event accepted by one of 15 algorithms

Background reduction

IANNES GUTENBERG

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

accepted by one of 15 algorithms

gen.event,MC

p_T application

- \boldsymbol{p}_{T} threshold of the open charm production

$$\overline{p}p \to D^0 \overline{D}^0$$
$$\overline{p}p \to D^+ D^-$$
$$\overline{p}p \to \Lambda_c \overline{\Lambda}_c$$

 \bullet p_{T} distribution :

$$p_T^{\max}(\sqrt{s};m) = \frac{\sqrt{s^2 - 4 \cdot s \cdot m^2}}{2\sqrt{s}}$$

where m = mass of particle

• apply the cut on p_T :

$$p_T^{\rm max} + 0.2 ({\rm GeV/c}) < p_T$$

HELMHOLTZ GEMEINSCHAF

Point Of Closest Approach

NES GUTENBERG

- Validity of the assumption of same origin for trajectories
- Considering two/three charged particle in a homogeneous field
- No fitting, analytical calculation of closest distance between tracks Output : POCA closest distance & vertex position

$\overline{p}p \rightarrow D^+ D^- \rightarrow K^- \pi^+ \pi^+ K^+ \pi^- \pi^- @\sqrt{s} = 5.474 \,\text{GeV/c}$

N

Signal efficiency and background reduction after POCA cut

• starting from the event selected by mass window :

$\mathcal{E}ff.(red.) = \frac{\text{event selected by FOCK}}{N_{\text{event within the mass window}}}$							
		No PID		PID loose			
	Closest D [cm]	Siganl MC	DPM	Siganl MC	DPM		
$D^{\pm}(K\pi\pi)$	1	95 %	76 %	82 %	42 %		
$\Lambda_c(pK^-\pi^+)$	1	95 %	82 %	79 %	33 %		
$D^0(K\pi)$	50	99 %	86 %	97 %	63 %		
$D^{\pm}(\pi^{\pm}e^{\mp}\mu^{\pm})$	1	91 %	73 %	86 %	45 %		
$\phi(K^+K^-)$	10	91 %	86 %	79 %	56 %		

not possible to use for the decay $D_s(\phi\pi) \& D^0(K\pi\pi^0)$ due to the intermediate state such as $\phi^0 \& \pi^0$ neutral decay

Vertex finder at online

HELMHOLTZ

Fast/Full Vertex Fitter as an online vertex finder

- based on the Billoir's method
- track parameterization by perigee description $(p,V)_i \rightarrow (\epsilon,z_p,\theta,\phi_p,\rho)_i$
 - ϵ signed distance of the perigee point to the z axis
 - $z_{\rm p}$ z position of the perigee point
 - $\hat{\theta}$ polar angle of the particle momentum
 - $\phi_{\rm p}~-$ azimutal angle of the particle momentum at the perigee point
 - ho circular curvature in the *x*–*y* plane, radius $R_{
 m c}=1/|
 ho|$
- (5X5)n covariant matrix dimensions are reduced to 3X3 during linearization leads a fast calculation/finding of the vertex
- two approaches are available, implemented by Ralf Kleimt

Simple fitting (Fast Fitter)

Extended fitting (Full Fitter)

distance between interaction point and decay vertex

Dist.

HELMHOLTZ GEMEINSCHAF

 $\overline{p}p \rightarrow D^+ D^- \rightarrow K^- \pi^+ \pi^+ \pi^- \pi^- @\sqrt{s} = 5.474 \,\mathrm{GeV/c}$

distribution with **linear** scale at *x*

A

HELMHOLTZ

Helmholtz-Institut Mainz

GEMEINSCHAF

 $\overline{p}p \rightarrow D^+ D^- \rightarrow K^- \pi^+ \pi^+ \pi^- \pi^- @\sqrt{s} = 5.474 \,\mathrm{GeV/c}$

distribution with **logarithmic** scale at x

Preliminary cuts on the vertex finding for the online application

	POCA	Fast Vertex Finding	Full Vertex Fitter	
	Closest D [cm]	Distance D [cm] $0 < \chi^2 < 200$	Distance D [cm] $0 < \chi^2$	
$D^{\pm}(K\pi\pi)$	1	1	1	
$\Lambda_c(pK^-\pi^+)$	1	5	5	
$\phi(K^+K^-)$	10	2	2	
$D^0(K\pi)$	50	1	1	
$D^{\pm}(\pi^{\pm}e^{\mp}\mu^{\pm})$	1	1	1	

- will be optimized values of closest D and distance D for each section
- other parameters like minimum D and/or vertex χ^2 can also be applied
- for full vertex fitter, χ^2 values are too small, have to be checked

DPM background

ANNES GUTENBERG

UNIVERSITÄT

Background reduction

INES GUTENBERG

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Summary & Outlook

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Some studies have been done ...

• at present 14 selection algorithms with kinematic cuts in the full chain MC simulation

background reduction ~ 0.004 @ 1.5 GeV/c & 0.04 @ 15GeV/c

- POCA and Fast Vertex Finder can basically be used in the online trigger
- p_T cut for D^{\pm} , D^0 and Λ_c (open charm production)
- $D^0 \rightarrow K\pi\pi^0$ selection is temporally excluded, necessary a vertex finder for neutral decay

Next step ...

new MC production for inclusive production

 $\overline{p}p \rightarrow D^+ D^- \rightarrow K\pi\pi + Any$, etc...

- study on the event shape variables using the data from new production
- test of background reduction with new track reconstruction code

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Backup

π^0 selection

 \bullet wide mass window for π^0

 Δm_{π} =0.13498 ± 0.015 GeV

 at this moment, no MC true matched info about γ i.e., neutral candidates

$\overline{p}p \to X(3872) \to \overline{D}^{*0}D^0 \to \overline{D}^0\pi^0D^0 \to K^-\pi^+K^+\pi^-\gamma\gamma$

Study on $\eta \rightarrow \gamma \gamma$ 0.453M events in the full simulation

η selection

 $0.2 ; <math>1^{\circ} < \theta < 148^{\circ}$

NES GUTENBERG

neutral track combinations without cut on $E_{emc} > 10 \text{ MeV}$

 η selection is presently not used in the trigger algorithms

Physics trigger efficiency

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

 $\mathcal{E} = \frac{N_{rec.event,MC}}{N_{gen.event,MC}} \qquad N_{rec}$

OHANNES GUTENBERG

UNIVERSITÄT MAIN

 $N_{\rm rec.event,MC}$ is the number of selected signal event accepted by one of 15 algorithms

Closest D from POCA

HELMHOLTZ | GEMEINSCHAFT Helmholtz-Institut Mainz

Closest D from POCA

GEMEINSCHAFT

Helmholtz-Institut Mainz

 $D^0 \rightarrow K^- \pi^+$

$\overline{p}p \to X(3872) \to \overline{D}^{*0}D^0 \to \overline{D}^0\pi^0D^0 \to K^-\pi^+K^+\pi^-\gamma\gamma$

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

Vertex cut by distance

JOHANNES GUTENBERG

HELMHOLTZ

Helmholtz-Institut Mainz

GEMEINSCHAF

 $\overline{p}p \rightarrow D^+ D^- \rightarrow K^- \pi^+ \pi^+ \pi^- \pi^- @\sqrt{s} = 5.474 \,\mathrm{GeV/c}$

distribution with **logarithmic** scale at *x*

IP

Fast Vertex Finder for D[±] @ 15GeV

INES GUTENBERG

UNIVERSITÄT

kinematic cut

HELMHOLTZ GEMEINSCHAF

Application of p_T cut in D selection

