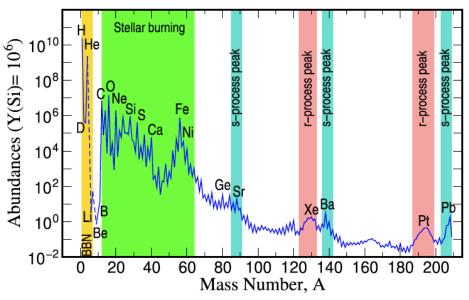
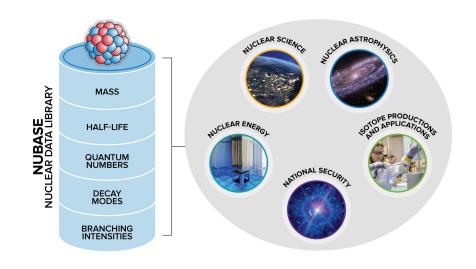


How Well Do We Know the Basic Properties of Nuclei: Update on the AME and NUBASE Nuclear Data Libraries


F.G. Kondev
Physics Division, Argonne National Laboratory
on behalf of AME & NUBASE collaboration

Nuclear Physics Properties & Astrophysics


- ⇒ major goal of Nuclear Astrophysics is to understand the Stellar Evolution of Stars & the Origin of Elements
 - needs comprehensive nuclear data for ALL known and MANY unknown nuclei in their ground states and excited isomers
- ⇒ mass is the key nuclear property nuclear decay & reactions phase spaces, e.g. decay Q values & reaction probabilities
 - influence all other nuclear properties T_{1/2}, BR, P_{β-n}, P_{β+p(a)}, reaction cross sections, etc. > impact on theoretical models and astrophysics network calculations

J. Covan et al., Rev. Mod. Phys. 93 (2021) 015002

AME & NUBASE

 \Rightarrow provide the evaluated (recommended) values for atomic masses, various decay and reaction Q values & other basic nuclear properties ($T_{1/2}$, $J\pi$, decay modes and BR) for all known (and a few unknown) nuclei in their ground and isomeric ($T_{1/2}$ >100 ns) states

- ⇒ latest libraries were published in March 2021:

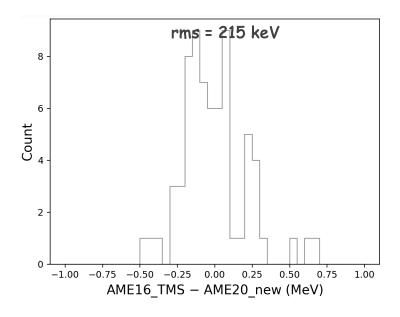
 AME2020 & NUBASE2020
 - coordinated by M. Wang (IMP) & F.G. Kondev (ANL)
 - recommended data for 3558 ground states and 1983 isomers

AME approach

- ⇒ COMPILATION of the Worldwide Produced Mass-related Data
 - DIRECT Methods:
 - TOF & MR-TOF, Storage Rings & Penning Traps
 - INDIRECT Methods
 - Reaction Energies (n,γ) , (p,γ) and (a,b) close to stability
 - Decay Energies far from stability
 - ▶ end-point energies in β^- and β^+ decays accuracy?
 - \triangleright β^+ -delayed charged-particle energies
 - ightharpoonup lpha and p decay energies heavy nuclei & proton-rich nuclei

⇒ EVALUATION of all experimental data

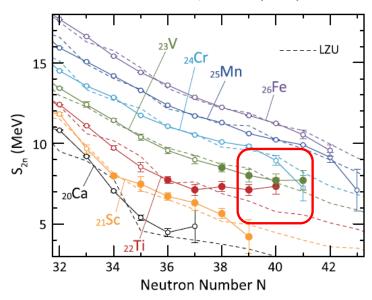
- critical examination many are accepted, some are rejected and/or modified ->
 identify & resolve conflicting data
- statistical treatment (weighted averages) of data of the same kind


⇒ LEAST-SQUARES FIT ADJUSTMENT to all selected data

- combine the accepted values using the least-squares fit approach
- FINAL RESULT -> mass values & covariances for all known nuclei

AME extrapolations (data with #)

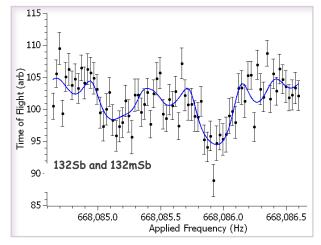
- ⇒ using an empirical approach by assuming that the Trend of the Mass Surface (TMS) is smooth
 - TMS extrapolated mass values for a limited number of unknown nuclei
 - replace "irregular" experimental masses by TMS extrapolated values 77 cases in AME2020


accuracy of the AME extrapolation

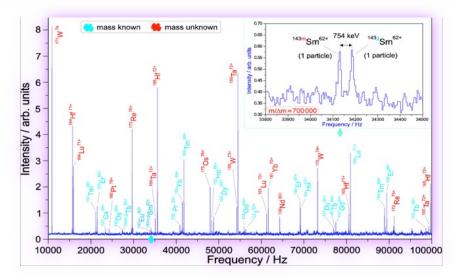
TMS in AME2016, BUT exp in AME2020

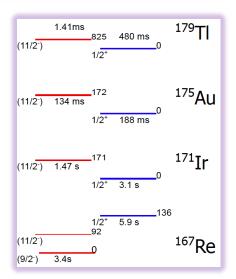
not always justified ... new physics?

S. Michimasa et al., PRL125 (2020) 122501

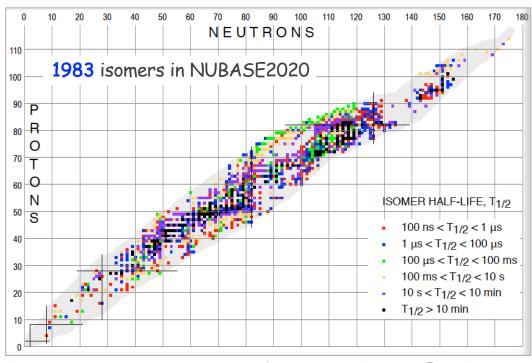

build up of deformation around N=40

Ground states & Isomers


• beware of isomers - do we have the right relations?


18Ha19	107678.2	1.6	162Eu-84Kr1.929	20Ma27	9725.2	30.6	220Pa(a)216Ac
20Vi04	52124.0	6.0	162Eu-133Cs1.218	21Ma66	9725.2	30.6	220Pa(a)216Ac
18Ha19	107850	2.0	162Eum-84Kr1.929	18Hu13	9730.30EC	20.4	220Pam(a)216Ac
20Vi04	52286.4	2.4	162Eum-133Cs1.218	21Ma66	9843.3	40.7	220Pam(a)216Ac
20Vi04	52292.4	8.1	162Eum-133Cs1.218	21Ma66,*	9843.3	40.7	220Pan(a)216Ac

- ⇒ need to assign a mass measurement result to a specific nuclear state (ground state or isomer)
 - ullet cases where the experimental $\Delta m/m$ is insufficient to resolve ground state from isomers
 - cases where excitation energy of the isomer is used to determine the ground state mass (e.g. 183mTl)

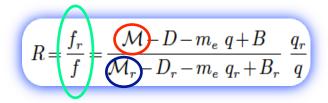


The NUBASE2020 evaluation of nuclear physics properties**

F.G. Kondev ^{1,*}, M. Wang (王猛)^{2,3,*}, W.J. Huang (黄文嘉)^{2,4,5,6}, S. Naimi⁷, G. Audi (欧乔治)⁶

 \Rightarrow complete, up-to-date & reliable information about the basic NP properties for gs & isomers

¹⁶² Eu	-58722.9	1.3				~ 10	S	1+#	07 17Wu04	T	1987	$\beta^{-}=100$	
$^{162}\mathrm{Eu}^m$	-58565.0	1.3	158.0	1.7	MD	15.0	s 0.5	(6^{+})	07 18Ha19	TJ	2016	β ⁻ =100	
^{162}Gd	-64281	4				8.4	m 0.2	0+	07		1967	$\beta^{-}=100$	
¹⁶² Tb	-65879.5	2.0				7.60	m 0.15	(1^{-})	16		1965	$\beta^{-}=100$	
$^{162}{\rm Tb}^{m}$	-65594.0	2.5	286	3		10#	m	4-#	20Or03	EJ	2020	β- ?; IT ?	
¹⁶² Dy	-68181.2	0.7				STABLE		0+	07		1934	IS=25.475 36	
162 Dy m	-65993.1	0.8	2188.1	0.3		8.3	μs 0.3	8+	11Sw02	ETE	2011	IT=100	
¹⁶² Ho	-66041	3				15.0	m 1.0	1+*	07		1957	$\beta^{+}=100$	
¹⁶² Ho ^m	-65935	3	105.87	0.06		67.0	m 0.7	6-*	07		1961	$IT=62; \beta^{+}=38$	
¹⁶² Er	-66334.2	0.8				STABLE	>140Ty	0+	07 56Po16	T	1938	IS=0.139 5; α ?; $2\beta^+$?	*
$^{162}\mathrm{Er}^{m}$	-64308.2	0.8	2026.01	0.13		88	ns 16	7(-)	07 12Sw01	TJ	1974	IT=100	
¹⁶² Tm	-61477	26				21.70	m 0.19	1-*	07		1963	$\beta^{+}=100$	
¹⁶² Tm ^m	-61350	50	130	40		24.3	s 1.7	5+	07 74De47	EDJ	1974	IT=81 4; β^+ =19 4	*
¹⁶² Yb	-59821	15				18.87	m 0.19	0+	07		1963	$\beta^{+}=100$	
	-52830	80			坤	1.37	m 0.02	1-*	07		1978	$\beta^{+}=100$	
	-52710#	220#	120#	200#	*	1.5	m	4-#	07		1980	$\beta^+ \approx 100;$ IT ?	
	-52530#	220#	300#	200#	EU	1.9	m	9-#	07		1980	β+ ?;IT ?	*
¹⁶² Hf	-49168	9				39.4	s 0.9	0+	07		1982	β^{+} =99.992 1; α =0.008 1	
	-39780	60			*	3.57	s 0.12	3-#	16		1985	β^{+} =99.926 10; α =0.074 10	
¹⁶² Ta ^m	-39660#	80#	120#	50#	*	5#	S	7+#				β^+ ?;IT ?; α ?	
	-33999	18				1.19	s 0.12	0+	16		1973	β^{+} ?; α =45.2 16	
¹⁶² Re	-22450#	200#				107	ms 13	$(2)^{-}$	07		1979	$\alpha = 94.6; \beta^{+}?$	
$^{162}\text{Re}^m$	-22280 #	200#	175	9	AD	77	ms 9	$(9)^{+}$	07		1979	$\alpha = 91.5; \beta + ?$	
	-14500#	300#				2.1	ms 0.1	0_{+}	07		1989	<i>α</i> =100	
$*^{162}Sm^{m}$	T: other 17	Pa25=1.7(0.2)											**
*162Eu	T: 17Wu04	= 11.8(1.4) 87€	Gr12=10.6(1.	.0) but val	ues include	both gs and	isomer						**
*162Eu	J : from 181	Ha19; conf p5/2	[413]n7/2[6	33],K=1+									**
*162Er		er limit is for $lpha$	decay										**
*162Tm"	E: from 66	.90+x keV; x<1	125 keV froi	n 74De47									**
$*^{162}Lu^{n}$	I: existence	e is tentative and	d needs conf	irmation									**


- ⇒ masses (Ex) for isomers and their method of deduction integral part of AME
- \Rightarrow T_{1/2}, J π , decay modes and BR for both ground states (3558) and isomers (1983)
- ⇒ properties of 205 Isobar Analog States

AME & NUBASE cover majority of nuclear properties needed in astrophysics simulations -> widely used in all Astro libraries

Value of Evaluation - example 69,69mCo

PHYSICAL REVIEW C 101, 041304(R) (2020)

Rapid Communications

Precision mass measurements of 67 Fe and 69,70 Co: Nuclear structure toward N=40 and impact on r-process reaction rates

Nuclide	$T_{1/2}$ (ms)	I^{π}	r	Δ _{JYFL} (keV)	Δ_{lit} (keV)	D
⁶⁷ Fe	394(9)	(1/2-)	0.797874190(8)	-45709.1(3.8)	-45610(270)	
⁶⁹ Co	180(20)	7/2-#	0.821649141(428) ^a	-50383(44)	-50280(140)	
69 Co ^m	750(250)	1/2-#	0.821651504(291) ^a	-50207(36)	-49780(240)#	
⁷⁰ Co ^b	508(7) [50]	$(1^+, 2^+)$ [50]	0.833615937(21)	-46525(11)	-46430(360)#	

...publication

PHYSICAL REVIEW C 103, 029902(E) (2021)

1

Erratum: Precision mass measurements of 67 Fe and 69,70 Co: Nuclear structure toward N=40 and impact on r-process reaction rates [Phys. Rev. C 101, 041304(R) (2020)]

erratum ...

Nuclide	$T_{1/2}$ (ms)	I^{π}	r	Δ _{JYFL} (keV)	Δ _{lit} (keV)	Difference (keV)
⁶⁷ Fe	394(9)	(1/2-)	0.707874101(40)	-45709.1(3.8)	-45610(270)	-99(270)
⁶⁹ Co	180(20)	7/2-#	0.82164916(110)a	-50385(86)	-50280(140)	-105(170)
69 Co m	750(250)	$1/2^{-}$ #	0.82165149(64) ^a	-50203(50)	-49780(240)#	-423(250)#
⁷⁰ Co ^b	508(7) [16]	$(1^+, 2^+)$ [16]	0.83361594(15)	-46525(11)	-46430(360)#	-95(360)#

PHYSICAL REVIEW C 97, 014309 (2018)

2

Precision mass measurements of neutron-rich Co isotopes beyond N = 40

Ion	Reference	Frequency ratio	Mass (u)	ME (keV)	AME2016 (keV)	ΔME (keV)
⁶⁸ Co ²⁺	¹⁶ O ¹⁸ O ⁺	1.000 641 552(70) 0.999 870 11(12)	67.944 559 2(48) 67.944 559 3(82)	-51 642.8(4.4) -51 642 6(7.6)	-51 930(190)	290(190) 290(190)
⁶⁹ Co ²⁺	³⁹ K ⁺	1.130 267 90(24)	68.946 093(15)	-50 214(14)	-50 280(140)	66(140)

claimed to be ⁶⁹Co, but it is actually ^{69m}Co

- 69Co 100% influence from 1
- 69mCo 93% influence from 2 and 7% influence from 1

Example: A=179 decay chain

- ⇒ENSDF in principle contains the needed nuclear structure information, BUT
 - increasingly outdated
 - non-uniform in quality and coverage
 - differences in polices

Comparison between NUBASE & ENSDF

- ⇒resolving ground states & isomers
 - excitation energies
 - lifetimes, e.g. ¹⁷⁵Au & ¹⁶⁷Re
 - ordering of the states e.g. ¹⁵⁵Tm
- \Rightarrow consistent $J\pi$ assignment
 - shape changes

ENSDF NUBASE 2004 ¹⁷¹Ir 2018 2000 9/2⁻ 3.4 s 2010 ^{155}Tm $^{\frac{(11/2)}{22 \text{ s}}}$

Where to find the data

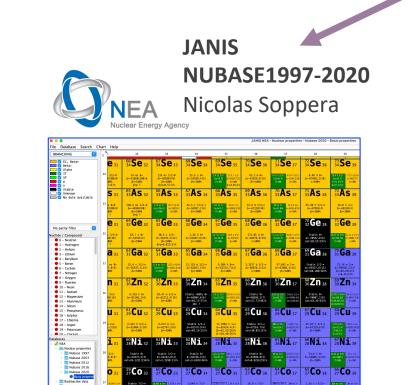
pdf & ascii covariances

https://www.anl.gov/phy/atomic-mass-data-resources

https://amdc.impcas.ac.cn/web/nubcleus%202_en.html https://www-nds.iaea.org/amdc/

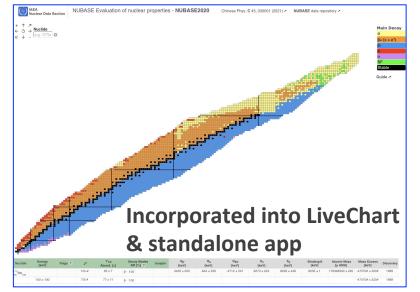
(ANL)

(IMF)

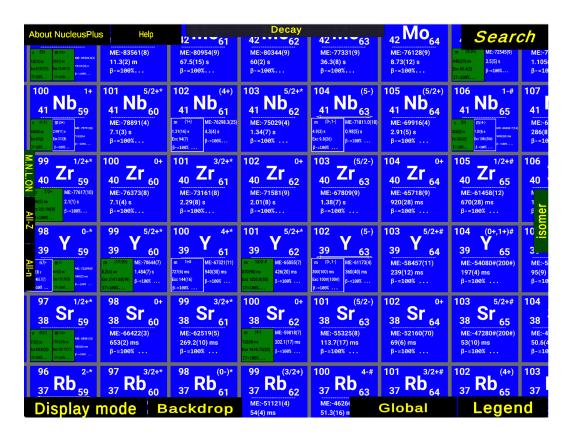


JAVA-AME
J. Chen

stand-alone & www



NUBASE2020 Marco Varpelli



New dissemination platforms

https://amdc.impcas.ac.cn/web/nubcleus%202_en.html (IMP)

Nucleus++: a new tool bridging Ame and Nubase for advancing nuclear data analysis

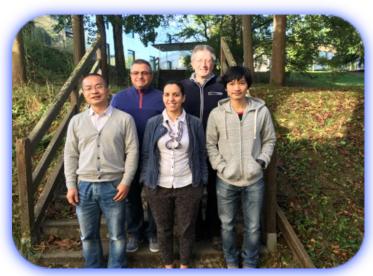
Jin-Yang Shi^{1,2} · Wen-Jia Huang^{3,2} ○ · Meng Wang² ○ · Xin-Liang Yan² · David Lunney⁴ · Georges Audi⁴ · Filip G. Kondev⁵ · Sarah Naimi⁴ · Rikel Chakma⁵

Desktop Applications

Mobile Applications

Next AME & NUBASE Updates

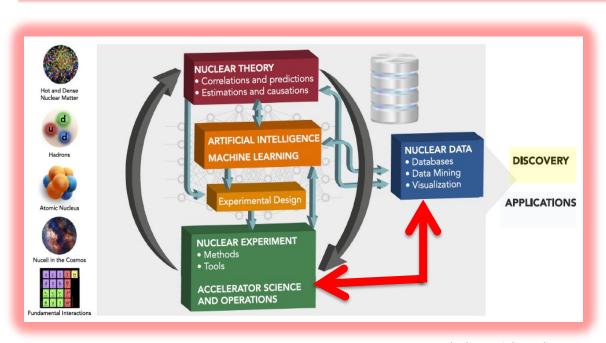
- historically A. Wapstra (since 1948), G. Audi (since 1985) & others
- since 2006 a collaboration effort between ANL, IJCL & IMP
 - ⇒ followed a 4 years publication interval 2012, 2016, 2020 ...



- next tables were planed for 2024 -> aiming at mid 2026
 - ⇒ relatively small effort 4 part-time staff (~1 FTE total) & 1 full time post-doc
 - maintaining the expertise, currency & quality

2013

2016



2023

Rikel Chakma post-doc @ANL

Role of Evaluated Nuclear Data

Rev. Mod. Phys. 94 (2022) 031003

- ⇒ Role of Nuclear Data: collect experimental results, assess the data and provide recommended (best) values for all nuclear properties
- ⇒ Essential Requirements: comprehensive, complete, up-to-date & reliable

Value of the evaluated data

- archival of all experimental data both published and unpublished - planning & executing new experiments, their analysis, interpretation & publication of the results
- resolve differences between overlapping and contradictory results
- identify and stimulate needs for new experiments
- beneficial to nuclear theory development
- input to specialized astro libraries and codes
- beneficial to many applied areas, e.g. nuclear medicine, nuclear energy, national security, etc.