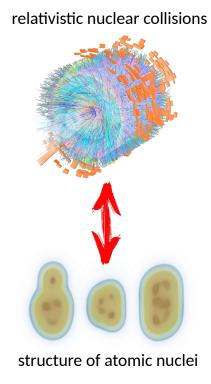
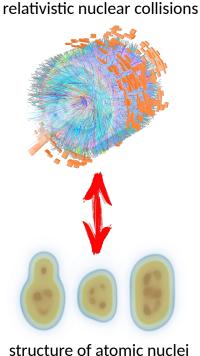
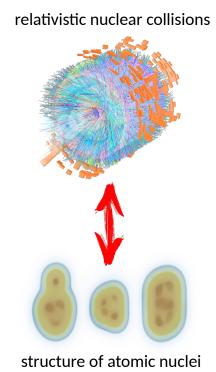
Coupling nuclear structure and the initial state of relativistic heavy-ion collisions


Benjamin Bally

EMMI Workshop - GSI, Darmstadt 10 November 2025



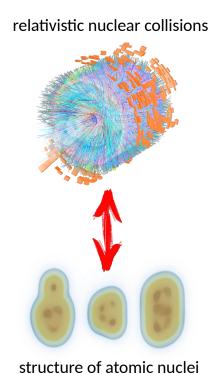
• Interface between low- and high-energy nuclear physics


- Interface between low- and high-energy nuclear physics
- New and mutually beneficial possibilities
 - → Determine the initial geometry of collisions
 - → Select nuclear species to collide
 - → Gain information about the structure of nuclei

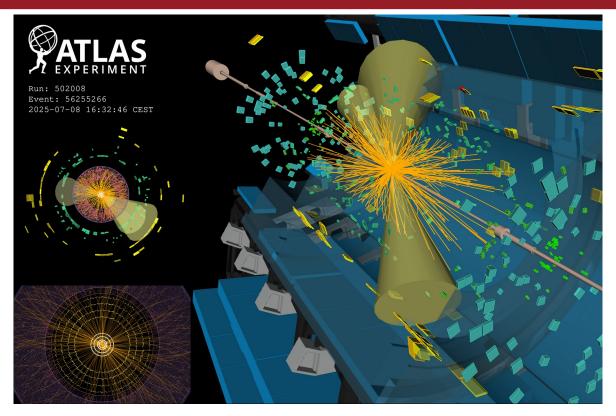
- Interface between low- and high-energy nuclear physics
- New and mutually beneficial possibilities
 - → Determine the initial geometry of collisions
 - → Select nuclear species to collide
 - → Gain information about the structure of nuclei
- A lot of activity over the past few years

Giacalone, PRL 127, 242301 (2021) Bally, PRL 128, 082301 (2022) Jia, PRL 131, 022301 (2023) Ryssens, PRL 130, 212302 (2023)

EMMI RRTF 2022 (Heidelberg) INT Program 23-1a (Seattle) Several workshops (Saclay, CERN, Beijing)

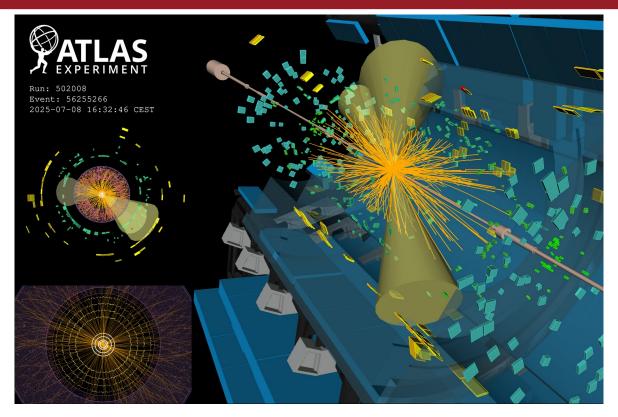


- Interface between low- and high-energy nuclear physics
- New and mutually beneficial possibilities
 - → Determine the initial geometry of collisions
 - → Select nuclear species to collide
 - → Gain information about the structure of nuclei
- A lot of activity over the past few years


Giacalone, PRL 127, 242301 (2021) Bally, PRL 128, 082301 (2022) Jia, PRL 131, 022301 (2023) Ryssens, PRL 130, 212302 (2023)

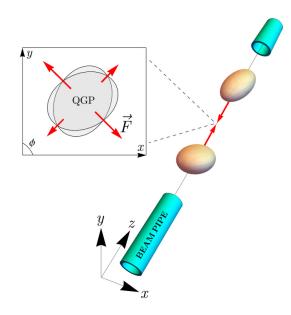
EMMI RRTF 2022 (Heidelberg) INT Program 23-1a (Seattle) Several workshops (Saclay, CERN, Beijing)

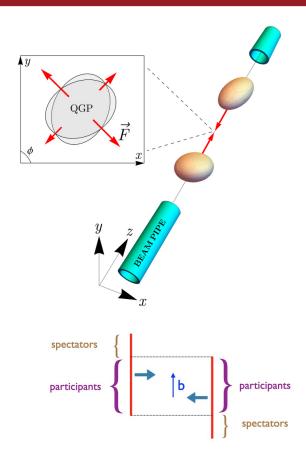
- Focus on high-energy and recent light-ions run at the LHC
 - → Clear connection (hydro expansion, time scale of the collisions)
 - \rightarrow 16O+16O and 20Ne+20Ne collided in 2025 at the LHC



Breaking new ground: 20Ne+20Ne at the LHC!

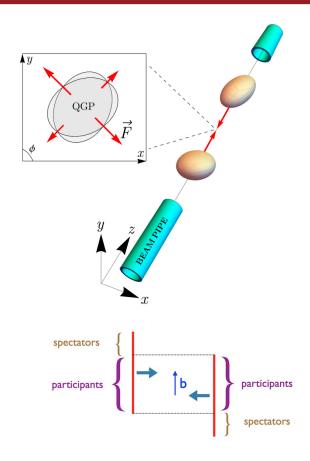
→ ²⁰Ne+²⁰Ne collided at the LHC on the 8th of July 2025!


Breaking new ground: 20Ne+20Ne at the LHC!

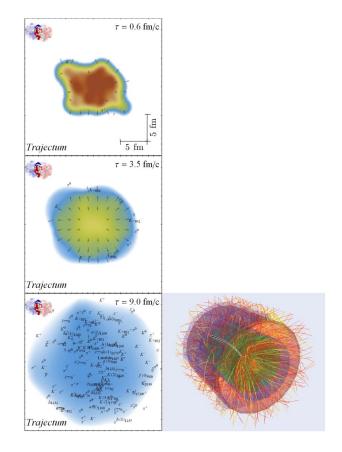

- → ²⁰Ne+²⁰Ne collided at the LHC on the 8th of July 2025!
- → Directly motivated by our predictions!

Giacalone, PRL 135, 012302 (2025)

Overview of relativistic nuclear collisions



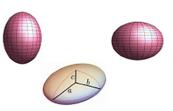
Overview of relativistic nuclear collisions



Ollitrault, EPJA 59, 236 (2023)

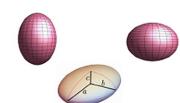
Overview of relativistic nuclear collisions

Ollitrault, EPJA 59, 236 (2023)

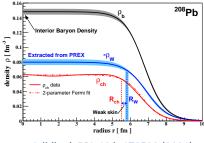


Giacalone, PRL 131, 202302 (2023) ALICE collaboration

• Protons and neutrons inside nuclei can adopt various spatial configurations

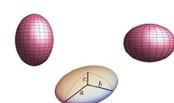

• Protons and neutrons inside nuclei can adopt various spatial configurations

• Nuclear deformation (quadrupole, octupole, ...)

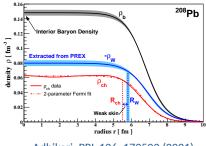


Protons and neutrons inside nuclei can adopt various spatial configurations

• Nuclear deformation (quadrupole, octupole, ...)

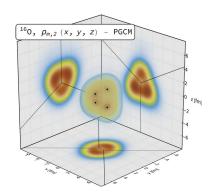


- Neutron-skin
 - → directly connected to the EoS

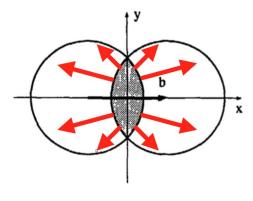


• Protons and neutrons inside nuclei can adopt various spatial configurations

• Nuclear deformation (quadrupole, octupole, ...)

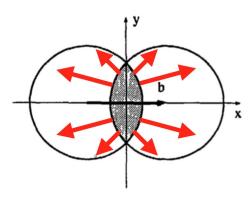


- Neutron-skin
 - → directly connected to the EoS

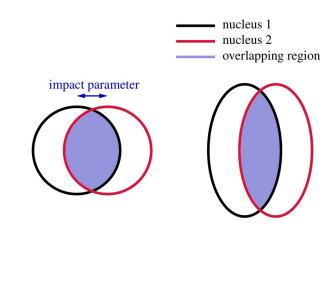


Adhikari, PRL 126, 172502 (2021)

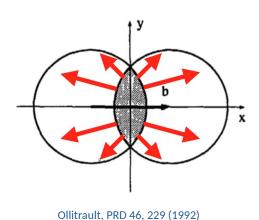
• Clustering (e.g. α-clusters)

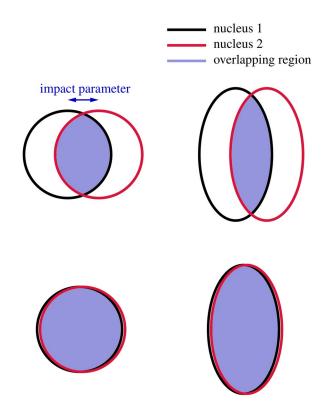


Spatial anisotropy of initial conditions

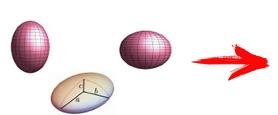


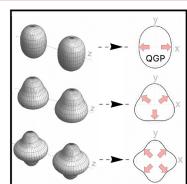
Ollitrault, PRD 46, 229 (1992) Ollitrault, EPJA 59, 236 (2023)


Spatial anisotropy of initial conditions

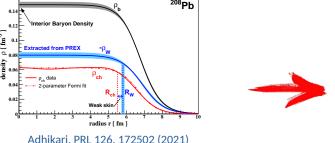

Ollitrault, PRD 46, 229 (1992) Ollitrault, EPJA 59, 236 (2023)

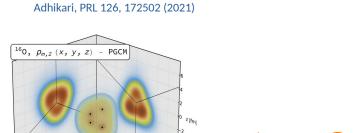
Spatial anisotropy of initial conditions

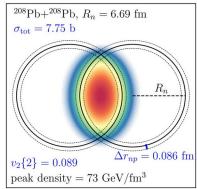

Ollitrault, EPJA 59, 236 (2023)



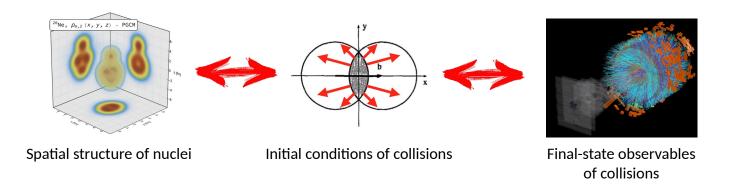
Nuclear arrangements → spatial anisotropies


• Protons and neutrons inside nuclei can adopt various spatial configurations

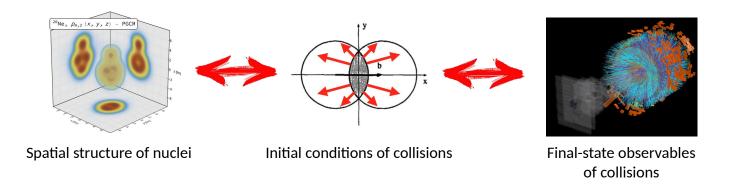

• Nuclear deformation (quadrupole, octupole, ...)



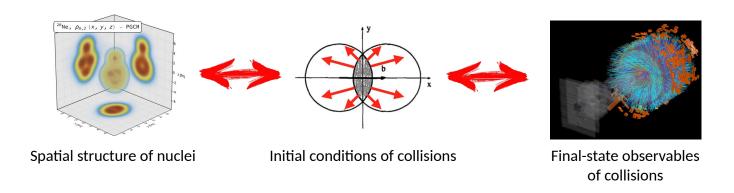
- Neutron-skin
 - \rightarrow directly connected to the EoS



Giacalone, PRL 131, 202302 (2023)


• Clustering (e.g. α-clusters)

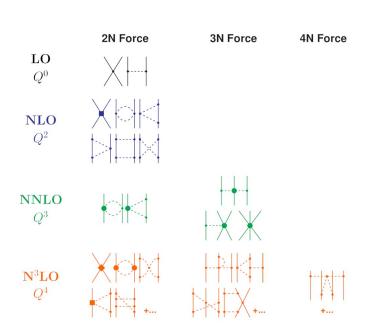
Connection between low- and high-energies


- Spatial structure of nuclei impacts relativistic collisions
 - → geometry of the overlap region
 - → effects visible on final-state observables (e.g., flow)

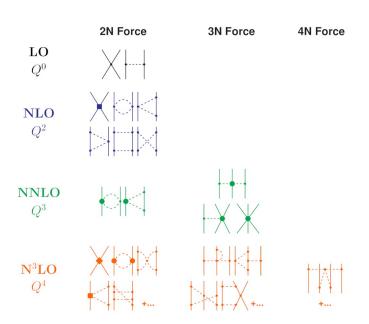
Connection between low- and high-energies

- Spatial structure of nuclei impacts relativistic collisions
 - → geometry of the overlap region
 - → effects visible on final-state observables (e.g., flow)
- τ_{collision} << τ_{nucleus}
 - → no rearrangement possible
 - → snapshot of the nuclear wave function

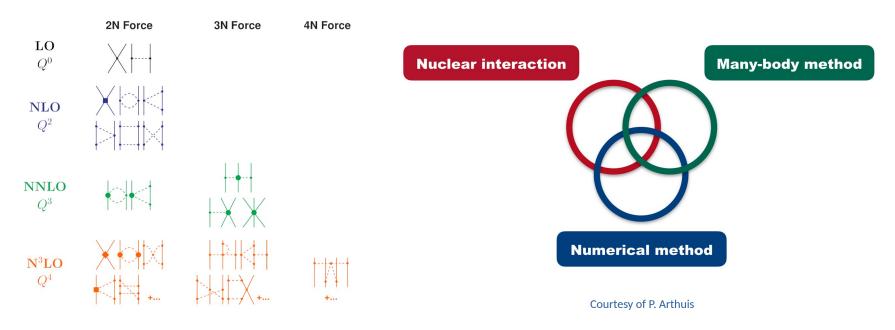
Connection between low- and high-energies

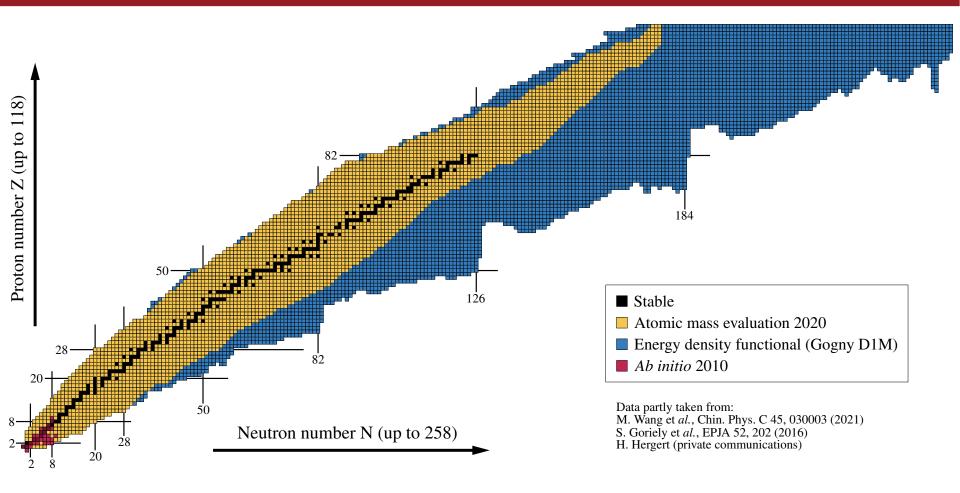


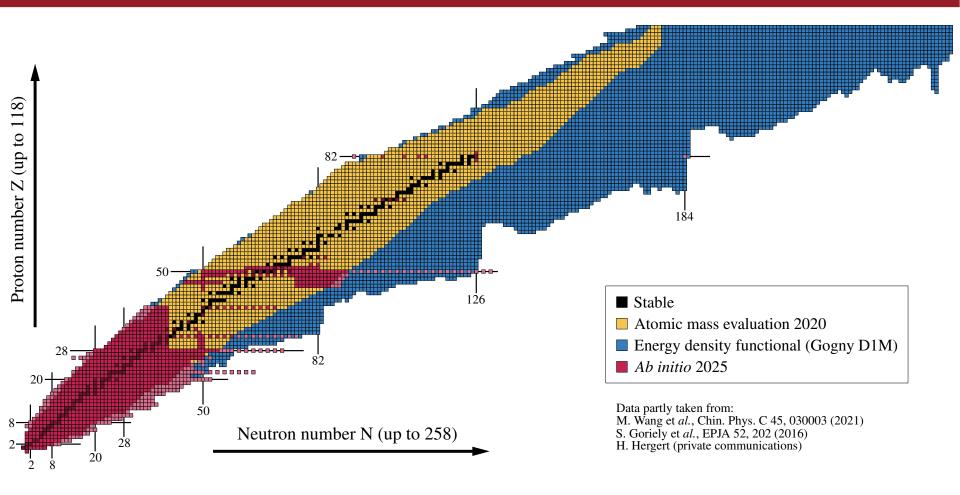
- Spatial structure of nuclei impacts relativistic collisions
 - → geometry of the overlap region
 - → effects visible on final-state observables (e.g., flow)
- τ_{collision} << τ_{nucleus}
 - → no rearrangement possible
 - → snapshot of the nuclear wave function

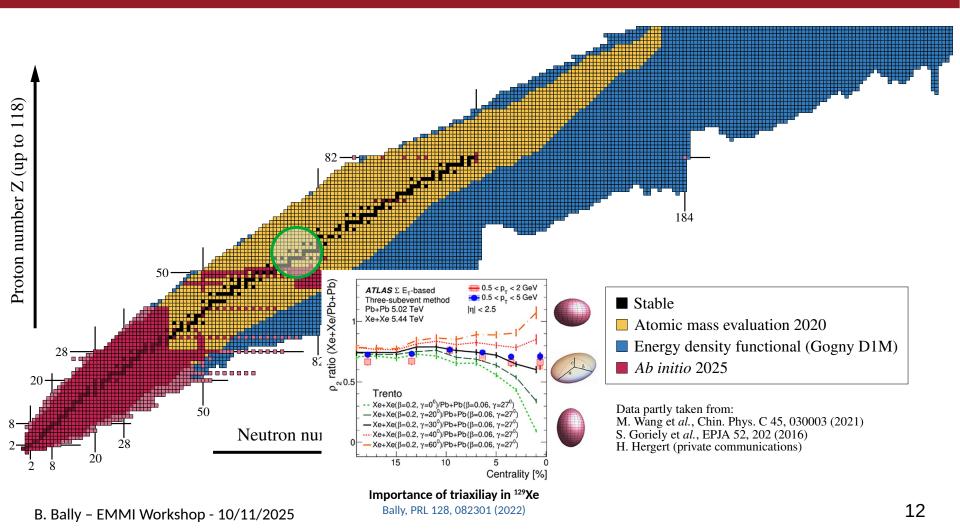

Nuclear structure theory

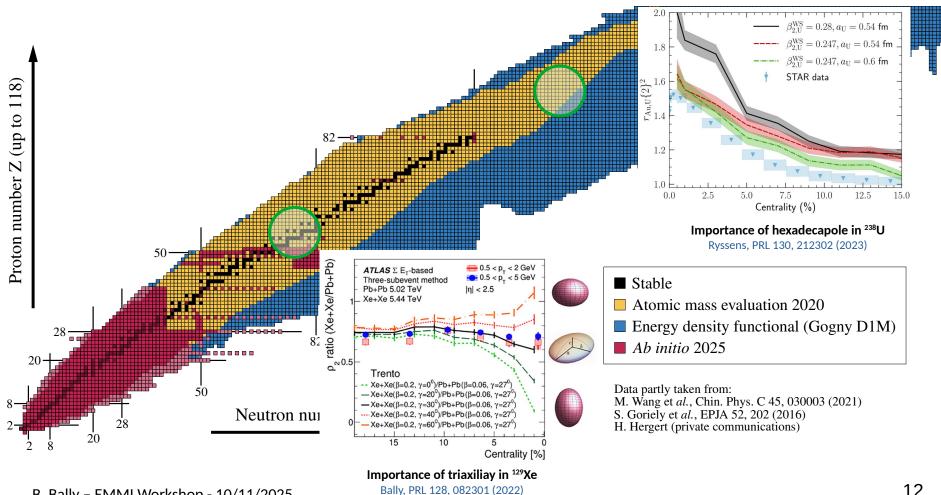
1) Nuclei made of A interacting structureless nucleons (Z protons, N neutrons)


- 1) Nuclei made of A interacting structureless nucleons (Z protons, N neutrons)
- 2) Internucleon interaction rooted in QCD through Effective Field Theory (EFT)

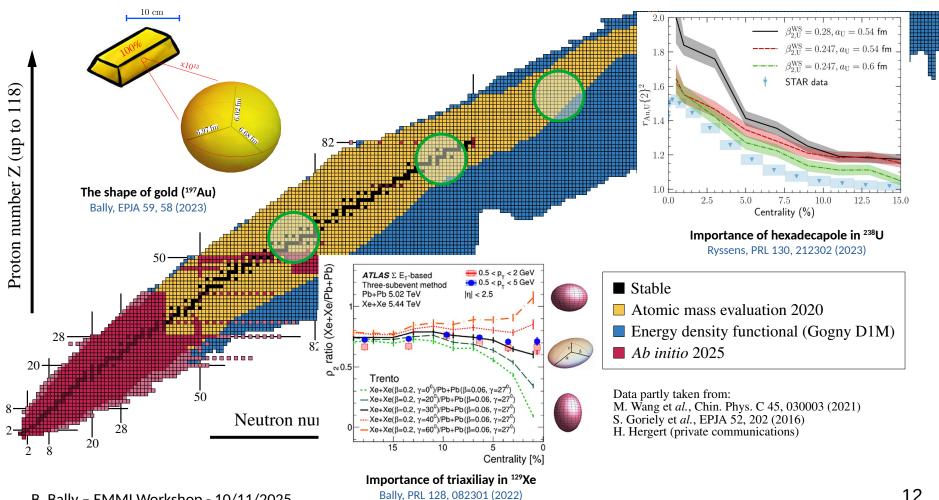

- 1) Nuclei made of A interacting structureless nucleons (Z protons, N neutrons)
- 2) Internucleon interaction rooted in QCD through Effective Field Theory (EFT)
- 3) Solve as exactly as possible the A-body Schrödinger equation: $H|\Psi\rangle = E|\Psi\rangle$


- 1) Nuclei made of A interacting structureless nucleons (Z protons, N neutrons)
- 2) Internucleon interaction rooted in QCD through Effective Field Theory (EFT)
- 3) Solve as exactly as possible the A-body Schrödinger equation: $H|\Psi\rangle = E|\Psi\rangle$


Reach of ab initio nuclear theory (2010)


Reach of ab initio nuclear theory (2025)

Also contributions from density functionals


Also contributions from density functionals

B. Bally - EMMI Workshop - 10/11/2025

12

Also contributions from density functionals


```
Exploiting <sup>20</sup>Ne Isotopes for Precision Characterizations of Collectivity in Small Systems

Giuliano Giacalone<sup>®</sup>, <sup>1,*</sup> Benjamin Bally<sup>®</sup>, <sup>2</sup> Govert Nijs<sup>®</sup>, <sup>3</sup> Shihang Shen<sup>®</sup>, <sup>4</sup> Thomas Duguet<sup>®</sup>, <sup>5,6</sup> Jean-Paul Ebran<sup>®</sup>, <sup>7,8</sup> Serdar Elhatisari<sup>®</sup>, <sup>9,10</sup> Mikael Frosini, <sup>11</sup> Timo A. Lähde, <sup>12,13</sup> Dean Lee<sup>®</sup>, <sup>14</sup> Bing-Nan Lu, <sup>15</sup> Yuan-Zhuo Ma, <sup>14</sup> Ulf-G. Meißner<sup>®</sup>, <sup>10,16,17</sup> Jacquelyn Noronha-Hostler<sup>®</sup>, <sup>18</sup> Christopher Plumberg<sup>®</sup>, <sup>19</sup> Tomás R. Rodríguez<sup>®</sup>, <sup>20</sup> Robert Roth, <sup>21,22</sup> Wilke van der Schee, <sup>3,23,24</sup> and Vittorio Somà<sup>®</sup>
```

Large collaboration of theorists from heavy-ion collisions and nuclear structure

```
PHYSICAL REVIEW LETTERS 135, 012302 (2025)

Exploiting <sup>20</sup>Ne Isotopes for Precision Characterizations of Collectivity in Small Systems

Giuliano Giacalone<sup>®</sup>, <sup>1,*</sup> Benjamin Bally<sup>®</sup>, <sup>2</sup> Govert Nijs<sup>®</sup>, <sup>3</sup> Shihang Shen<sup>®</sup>, <sup>4</sup> Thomas Duguet<sup>®</sup>, <sup>5,6</sup> Jean-Paul Ebran<sup>®</sup>, <sup>7,8</sup> Serdar Elhatisari<sup>®</sup>, <sup>9,10</sup> Mikael Frosini, <sup>11</sup> Timo A. Lähde, <sup>12,13</sup> Dean Lee<sup>®</sup>, <sup>14</sup> Bing-Nan Lu, <sup>15</sup> Yuan-Zhuo Ma, <sup>14</sup> Ulf-G. Meißner<sup>®</sup>, <sup>10,16,17</sup> Jacquelyn Noronha-Hostler<sup>®</sup>, <sup>18</sup> Christopher Plumberg<sup>®</sup>, <sup>19</sup> Tomás R. Rodríguez<sup>®</sup>, <sup>20</sup> Robert Roth, <sup>21,22</sup> Wilke van der Schee, <sup>3,23,24</sup> and Vittorio Somà<sup>®</sup>
```

- Large collaboration of theorists from heavy-ion collisions and nuclear structure
- The Proposal: combine planned ¹⁶O+¹⁶O run with an additional ²⁰Ne+²⁰Ne run

```
PHYSICAL REVIEW LETTERS 135, 012302 (2025)

Exploiting <sup>20</sup>Ne Isotopes for Precision Characterizations of Collectivity in Small Systems

Giuliano Giacalone<sup>®</sup>, <sup>1,*</sup> Benjamin Bally<sup>®</sup>, <sup>2</sup> Govert Nijs<sup>®</sup>, <sup>3</sup> Shihang Shen<sup>®</sup>, <sup>4</sup> Thomas Duguet<sup>®</sup>, <sup>5,6</sup> Jean-Paul Ebran<sup>®</sup>, <sup>7,8</sup> Serdar Elhatisari<sup>®</sup>, <sup>9,10</sup> Mikael Frosini, <sup>11</sup> Timo A. Lähde, <sup>12,13</sup> Dean Lee<sup>®</sup>, <sup>14</sup> Bing-Nan Lu, <sup>15</sup> Yuan-Zhuo Ma, <sup>14</sup> Ulf-G. Meißner<sup>®</sup>, <sup>10,16,17</sup> Jacquelyn Noronha-Hostler<sup>®</sup>, <sup>18</sup> Christopher Plumberg<sup>®</sup>, <sup>19</sup> Tomás R. Rodríguez<sup>®</sup>, <sup>20</sup> Robert Roth, <sup>21,22</sup> Wilke van der Schee, <sup>3,23,24</sup> and Vittorio Somà<sup>®</sup>
```

- Large collaboration of theorists from heavy-ion collisions and nuclear structure
- The Proposal: combine planned ¹⁶O+¹⁶O run with an additional ²⁰Ne+²⁰Ne run
 - → Ratio/difference of observables reduce uncertainties

```
Exploiting <sup>20</sup>Ne Isotopes for Precision Characterizations of Collectivity in Small Systems

Giuliano Giacalone<sup>®</sup>, <sup>1,*</sup> Benjamin Bally<sup>®</sup>, <sup>2</sup> Govert Nijs<sup>®</sup>, <sup>3</sup> Shihang Shen<sup>®</sup>, <sup>4</sup> Thomas Duguet<sup>®</sup>, <sup>5,6</sup> Jean-Paul Ebran<sup>®</sup>, <sup>7,8</sup> Serdar Elhatisari<sup>®</sup>, <sup>9,10</sup> Mikael Frosini, <sup>11</sup> Timo A. Lähde, <sup>12,13</sup> Dean Lee<sup>®</sup>, <sup>14</sup> Bing-Nan Lu, <sup>15</sup> Yuan-Zhuo Ma, <sup>14</sup> Ulf-G. Meißner<sup>®</sup>, <sup>10,16,17</sup> Jacquelyn Noronha-Hostler<sup>®</sup>, <sup>18</sup> Christopher Plumberg<sup>®</sup>, <sup>19</sup> Tomás R. Rodríguez<sup>®</sup>, <sup>20</sup> Robert Roth, <sup>21,22</sup> Wilke van der Schee, <sup>3,23,24</sup> and Vittorio Somà<sup>®</sup>
```

- Large collaboration of theorists from heavy-ion collisions and nuclear structure
- The Proposal: combine planned ¹⁶O+¹⁶O run with an additional ²⁰Ne+²⁰Ne run
 - → Ratio/difference of observables reduce uncertainties
 - → Exploit large deformation of ²⁰Ne to enhance the production of elliptic flow

```
Exploiting <sup>20</sup>Ne Isotopes for Precision Characterizations of Collectivity in Small Systems

Giuliano Giacalone<sup>0,1,*</sup> Benjamin Bally<sup>0,2</sup> Govert Nijs<sup>0,3</sup> Shihang Shen<sup>0,4</sup> Thomas Duguet<sup>0,5,6</sup> Jean-Paul Ebran<sup>0,7,8</sup> Serdar Elhatisari<sup>0,9,10</sup> Mikael Frosini,<sup>11</sup> Timo A. Lähde,<sup>12,13</sup> Dean Lee<sup>0,14</sup> Bing-Nan Lu,<sup>15</sup> Yuan-Zhuo Ma,<sup>14</sup> Ulf-G. Meißner<sup>0,10,16,17</sup> Jacquelyn Noronha-Hostler<sup>0,18</sup> Christopher Plumberg<sup>0,19</sup> Tomás R. Rodríguez<sup>0,20</sup> Robert Roth,<sup>21,22</sup> Wilke van der Schee,<sup>3,23,24</sup> and Vittorio Somà<sup>0,5</sup>
```

- Large collaboration of theorists from heavy-ion collisions and nuclear structure
- The Proposal: combine planned ¹⁶O+¹⁶O run with an additional ²⁰Ne+²⁰Ne run
 - → Ratio/difference of observables reduce uncertainties
 - → Exploit large deformation of ²⁰Ne to enhance the production of elliptic flow
 - → Learn about collectivity in small systems (geometry under control)

```
Exploiting <sup>20</sup>Ne Isotopes for Precision Characterizations of Collectivity in Small Systems

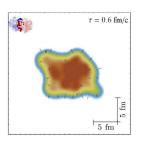
Giuliano Giacalone<sup>0</sup>, <sup>1,*</sup> Benjamin Bally<sup>0</sup>, <sup>2</sup> Govert Nijs<sup>0</sup>, <sup>3</sup> Shihang Shen<sup>0</sup>, <sup>4</sup> Thomas Duguet<sup>0</sup>, <sup>5,6</sup> Jean-Paul Ebran<sup>0</sup>, <sup>7,8</sup> Serdar Elhatisari<sup>0</sup>, <sup>9,10</sup> Mikael Frosini, <sup>11</sup> Timo A. Lähde, <sup>12,13</sup> Dean Lee<sup>0</sup>, <sup>14</sup> Bing-Nan Lu, <sup>15</sup> Yuan-Zhuo Ma, <sup>14</sup> Ulf-G. Meißner<sup>0</sup>, <sup>10,16,17</sup> Jacquelyn Noronha-Hostler<sup>0</sup>, <sup>18</sup> Christopher Plumberg<sup>0</sup>, <sup>19</sup> Tomás R. Rodríguez<sup>0</sup>, <sup>20</sup> Robert Roth, <sup>21,22</sup> Wilke van der Schee, <sup>3,23,24</sup> and Vittorio Somà<sup>0</sup>
```

- Large collaboration of theorists from heavy-ion collisions and nuclear structure
- The Proposal: combine planned ¹⁶O+¹⁶O run with an additional ²⁰Ne+²⁰Ne run
 - → Ratio/difference of observables reduce uncertainties
 - → Exploit large deformation of ²⁰Ne to enhance the production of elliptic flow
 - → Learn about collectivity in small systems (geometry under control)
- Perform state-of-the-art calculations with quantitative predictions

Tools and workflow

Nuclear structure EFT Relativistic Hydro **Hadron transport PRL**

Chiral EFT N3LO

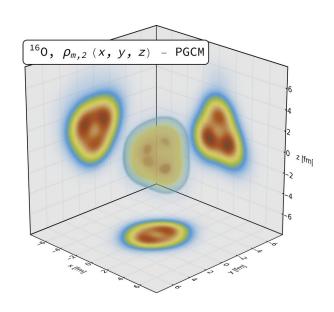


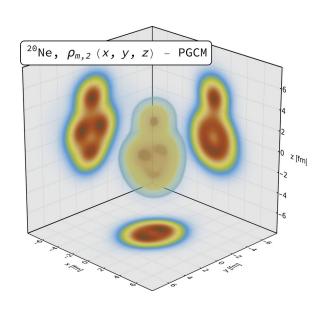
PGCM

Pionless EFT LO

NLEFT

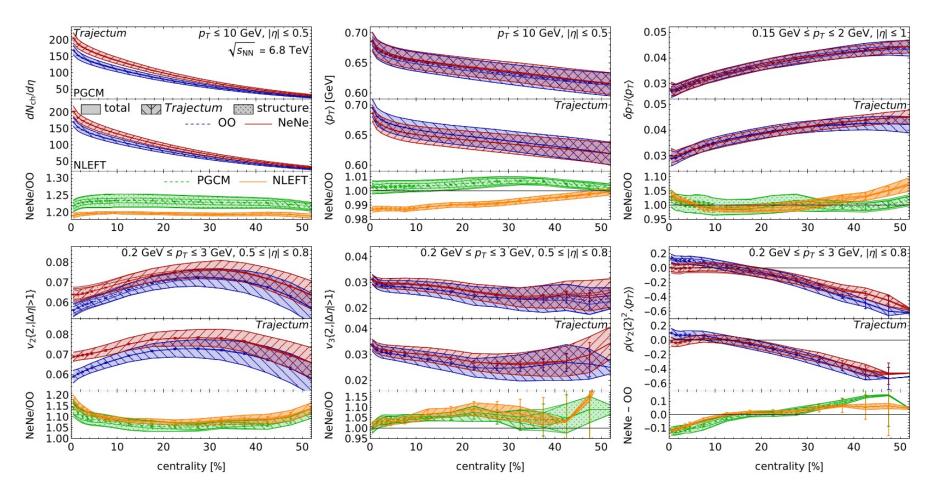
Trajectum

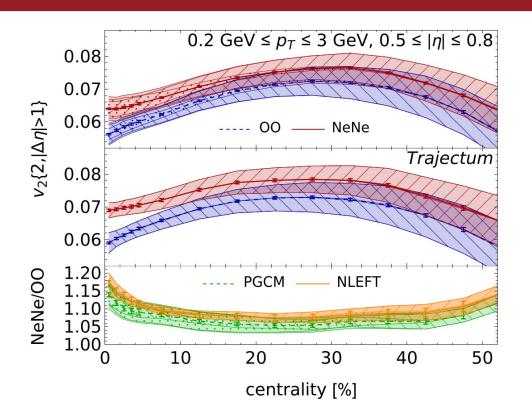

PRL 135, 012302

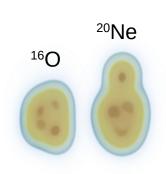

TAURUS: https://github.com/project-taurus

Trajectum: https://sites.google.com/view/govertnijs/trajectum

SMASH: https://github.com/smash-transport/smash

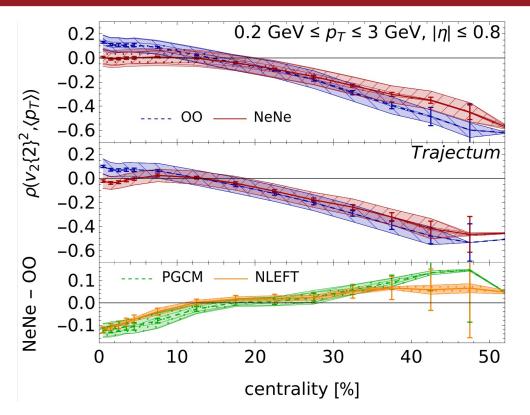

Spatial structure of ¹⁶O and ²⁰Ne

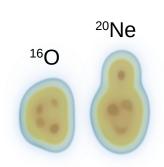



- Effective one-body densities associated with the PGCM calculations
- $^{16}O \rightarrow \text{tetrahedron of 4 } \alpha\text{-clusters}$
- 20 Ne \rightarrow 16 O + α "Bowling Pin"

Predictions for 16O+16O and 20Ne+20Ne

Focus on the elliptic flow

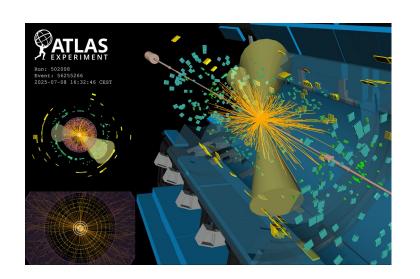


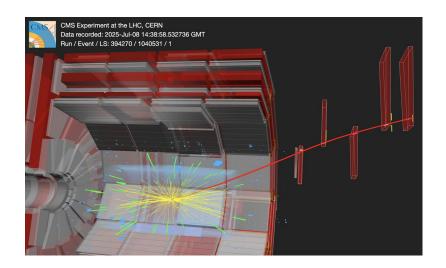


$$\frac{v_2\{2\}_{\text{NeNe}}}{v_2\{2\}_{\text{OO}}} = \begin{cases} 1.174(8)_{\text{stat}}(31)_{\text{syst}}^{Traj}(4)_{\text{syst}}^{\text{str}} & (\text{NLEFT}), \\ 1.139(6)_{\text{stat}}(27)_{\text{syst}}^{Traj}(28)_{\text{syst}}^{\text{str}} & (\text{PGCM}), \end{cases}$$

- Ratio > 1 in very central collisions \rightarrow consistent with large deformation of ²⁰Ne
- Predictions consistent between PGCM and NLEFT

Focus on the correlation $\rho(v\{2\}, < p_t >)$

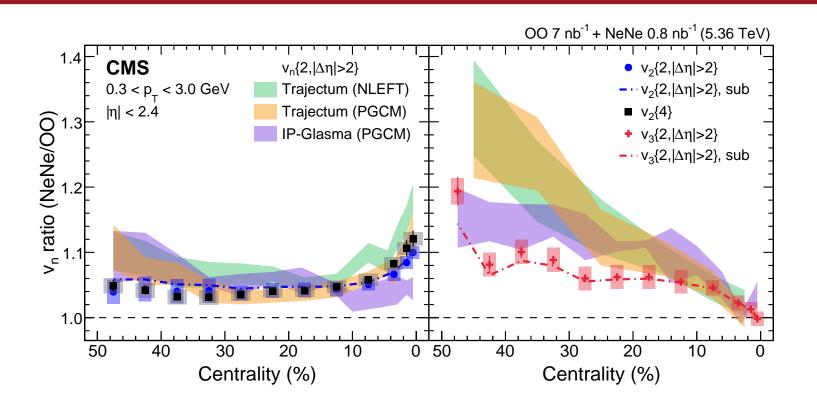




$$\rho(v_2^2, \langle p_t \rangle) = \frac{\langle \delta v_2^2 \delta \langle p_t \rangle \rangle}{\sqrt{\langle (\delta v_2^2)^2 \rangle \langle (\delta \langle p_t \rangle)^2 \rangle}}$$

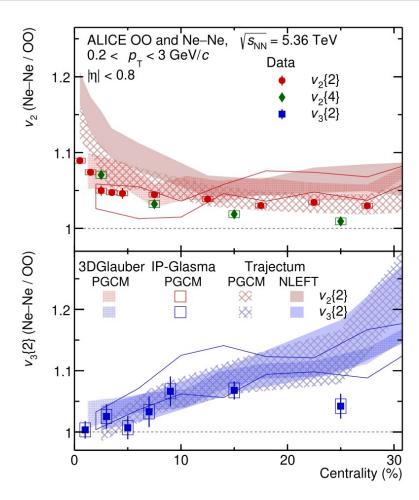
• Suppression of ρ due to the large deformation of 20 Ne: $\rho_{\mathrm{Ne+Ne}} - \rho_{\mathrm{O+O}} \propto \left(\beta_{2,^{16}\mathrm{O}}^3 - \beta_{2,^{20}\mathrm{Ne}}^3\right)$

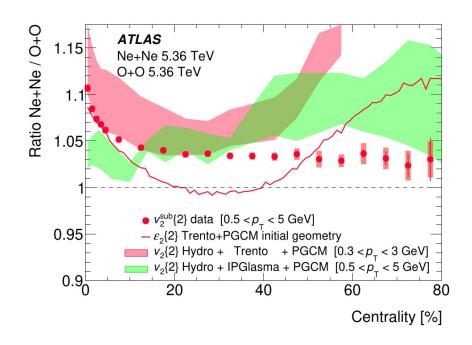
First results from the LHC!

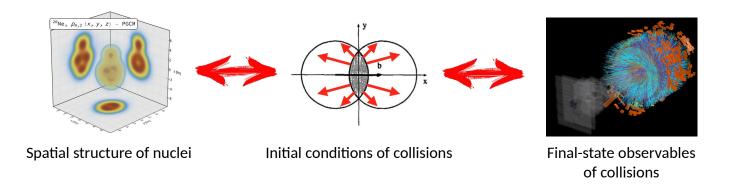

CMS: arXiv:2510.02580

ATLAS: arXiv:2509.05171

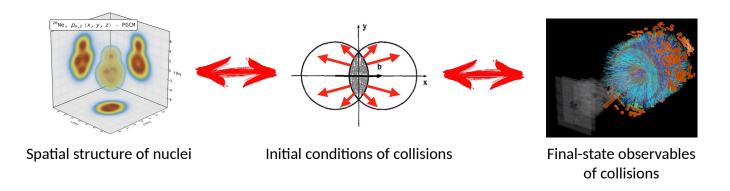
ALICE: arXiv:2509.06428


LHCb: LHCb-CONF-2025-001


First results from the LHC!


Excellent agreement in very central collisions!

First results from the LHC!



Conclusion

- Spatial structure of nuclei impacts relativistic collisions
 - → initial geometry of collisions
 - → effects visible on final-state observables (e.g., flow)

Conclusion

- Spatial structure of nuclei impacts relativistic collisions
 - → initial geometry of collisions
 - → effects visible on final-state observables (e.g., flow)
- Collaboration between low- and high-energy nuclear theorists has great potential!
 - → use nuclear-structure theory to determine the initial geometry
 - → motivated ²⁰Ne+²⁰Ne run at the LHC!