Pawel Danielewicz¹ and $S\pi RIT$ Collaboration

¹ Facility for Rare Isotope Beams, Michigan State University, USA

EMMI Workshop: Collective Phenomena and Equation-of-State of Dense Baryonic Matter

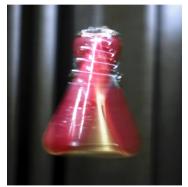
GSI. Darmstadt. November 10-13, 2025

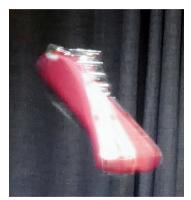
Goal: Triple-Differential Yields from Data

SπRIT Data

Distributions for Fixed Direction of Reaction Plane from Theory and Experiment

no control over plane


What is it?!


Goal: Triple-Differential Yields from Data

SπRIT Data

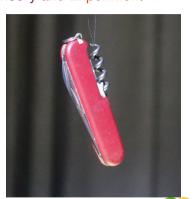
Distributions for Fixed Direction of Reaction Plane from Theory and Experiment

no control over plane

some control, v_n

Goal: Triple-Differential Yields from Data

S#RIT Data


Distributions for Fixed Direction of Reaction Plane from Theory and Experiment

no control over plane

some control, v_n

full control, $\frac{d^3N}{dp^3}$

Claim: You can get to right panel through optical deblurring!

Deblurring by Example

Budd, Crime Fighting Math, plus.maths.org magazine

Blurred Photo of Moving Car

Introduction

000000

Deblurred

Photo of Parked Car

Fast Moving

Deblurring in Optical Microscopy

Correcting f/Distortions Due to Apparatus or Method

Detector efficiency ϵ , n measured ptcle number, N actual number

$$N \simeq \frac{1}{\epsilon} n$$

Typical energy loss in thick target $\overline{\Delta E}$ for detected particle

$$E_{\mathsf{prod}} \simeq E_{\mathsf{det}} + \overline{\Delta E}$$

General problem stated probabilistically, with $P(\zeta|\xi)$ - probability to measure ptcle characteristic to be ζ when it is actually ξ

$$n(\zeta) = \int d\xi \, P(\zeta|\xi) \, N(\xi)$$

For small distortions, P finite only when ζ little different from ξ . Optical terminology: P - blurring or transfer function.

Bayesian Deblurring: Richardson-Lucy

Distorted $n(\zeta)$ measured, while pristine $N(\xi)$ sought:

$$n(\zeta) = \int d\xi \, P(\zeta|\xi) \, N(\xi)$$

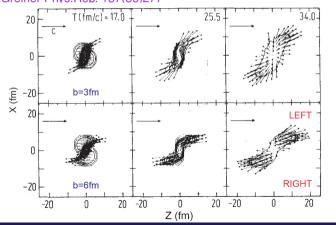
 $P(\zeta|\xi)$ - probability that ptcle with ζ' detected while it really has characteristic ξ , understood given the method/apparatus, can be simulated (Geant4) & can depend on N

 $Q(\xi|\zeta)$ - unknown complementary probability that ptcle has characteristic ξ while measured at ζ

Bayesian relation: number of times ptcle has characteristic in $d\xi$ while measured in $d\zeta$ is

$$P(\zeta|\xi) N(\xi) d\xi d\zeta = Q(\xi|\zeta) n(\zeta) d\xi d\zeta$$

Hence
$$N(\xi) = \frac{\int d\zeta \ Q(\xi|\zeta) \ n(\zeta)}{\int d\zeta' \ P(\zeta'|\xi)}, \quad Q(\xi|\zeta) = \frac{P(\zeta|\xi) \ N(\xi)}{\int d\xi' \ P(\zeta|\xi') \ N(\xi')}$$

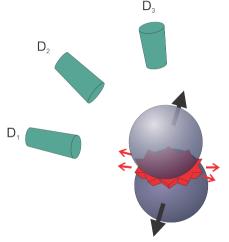

FRIB

Richardson-Lucy method solves eqs iteratively till stabilization

Reaction-Plane Deflection in Hydrodynamic Calculations

Matter dispersed in the final stage, but most likely direction of motion away from the beam, e.g., in the calculations by Buchwald for Nb + Nb at 400 MeV/nucl

Stöcker&Greiner Phys.Rep. 137(86)277



Can this be seen experimentally??

Estimating Reaction-Plane Direction w/o Self-Correlation


Plane direction f/particle μ estimated with

$$\mathbf{q}_{\mu} = rac{1}{N} \sum_{
u
eq \mu} \omega_{
u} \, \mathbf{p}_{
u}^{\perp} \quad \ \omega_{
u} = egin{cases} +1, & ext{if } oldsymbol{p}_{
u}^{z} > 0 \ -1, & ext{if } oldsymbol{p}_{
u}^{z} < 0 \end{cases}$$

N - measured particle multiplicity; other ptcles in the event used as reference for μ

> TRUE DIRECTION OF REACTION

PD&Odyniec PLB157(85)146 PLANE Problem: Reference vector **q**_u Gaussian fluctuates around true plane direction, blurring features

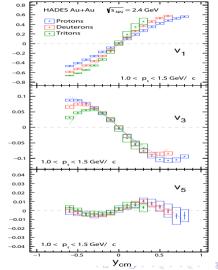
Current Solution: Angular Moments of Distributions

SπRIT Data

Solution: average angular moments (azimuthal Fourier coefficients)

$$v_n = \langle \cos n\phi \rangle$$

 ϕ - angle relative to true reaction plane Voloshin&Zhang ZfPhC70(1996)665


 v_n derived from average scalar products/contractions, e.g.,

$$\langle \mathbf{p}_{\mu}^{\perp} \cdot \mathbf{q}_{\mu} \rangle \simeq \mathbf{p}^{\perp} \langle \mathbf{q}^{\mathbf{x}} \rangle \langle \cos \phi \rangle$$

for different p^{\perp} , ν and ptcle ID

Problem: unclear physics in v_n especially for higher n

1.23 GeV/nucl Au + Au $b \sim 6$ fm HADES PRL125(2020)262301

restored

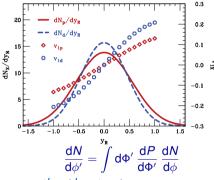
How Hard Deblurring? 1D Model First

Proposition: Carry out as good determination of 3D info as you can

& refine with deblurring. \(\ni_{\epsilon}\)?

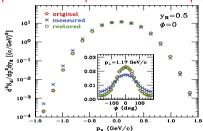
First 1D deblurring test. Projectile at unknown velocity V deexcites emitting N = 10 ptcles distributed with box-like dN/dvin projectile cm. Task: Measuring ptcles in lab, determine dN/dv. Cm velocity V'estimated from remaining ptcles, so V' & dN/dv' smeared:

$$\frac{dN}{dv'} = \int dV' \frac{dP}{dV'} \frac{dN}{dv}$$

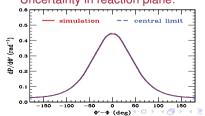

measured IN/dv, dN/dv 1.0 central 0.5 -0.5 →Central-limit smear + RL deblur

PD&Kurata-Nishimura PRC105(2022)034608

FRIB


3D Model for Collisions

Customary thermal model with flow, N, d, t, 3 He, 4 He. $\langle Z_{Tot} \rangle = 50$ Rapidity dstr, temperature & flow typical for semicentral collisions at 300 MeV/nucl

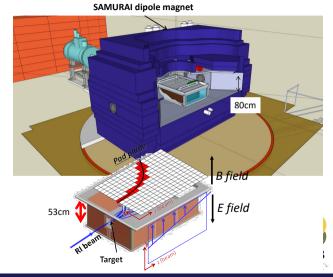


$$\phi' + \Phi' = \phi + \Phi$$

BL deblur + central-limit Strong anisotropies restored! Triple differential spectrum in reaction plane:

SπRIT 270MeV/u Measurements

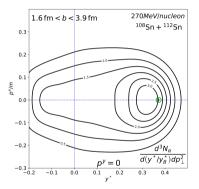
The first $S\pi RIT$ Time Projection Chamber (TPC) experiment was carried out in RIKEN Rare Isotope Beam Facility in 2016


Projectile-target combinations:

$124,112$
Sn + 112,124 Sn

$$\Rightarrow$$
 108 Sn + 112 Sn

From $S\pi RIT$: Jeonghyeok Park & Mizuki Kurata-Nishimura

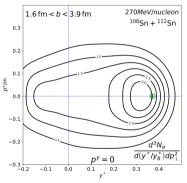

 \sim 450,000 semicentral events

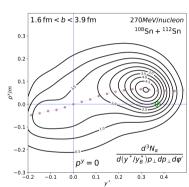
SπRIT Data

••••••••••••

Distributions for *Fixed Direction of Reaction Plane* from Experiment and Theory?

no control over plane


Boring?



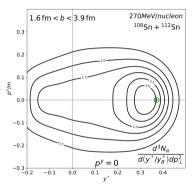
Triple-Differential Yields: $S\pi RIT 270 MeV/u^{108} Sn + ^{112} Sn$

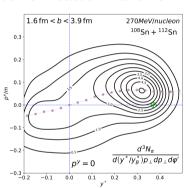
Distributions for Fixed Direction of Reaction Plane from Experiment and Theory?

no control over plane

some control, $v_n' \rightarrow v_n$

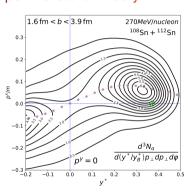
Something showing up...




Triple-Differential Yields: $S\pi RIT 270 MeV/u ^{108} Sn + ^{112} Sn$

SπRIT Data

Distributions for Fixed Direction of Reaction Plane from Experiment and Theory?

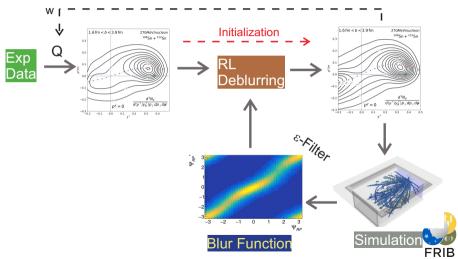


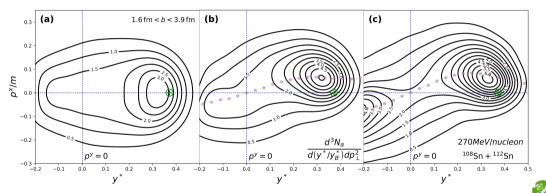
no control over plane

some control, $v_n' \rightarrow v_n$

Something showing up...

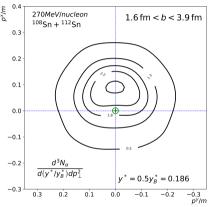
full control, $\frac{d^3N}{dv dr}$

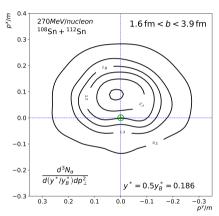



Deblurring S π RIT Data: Flow Diagram

Challenge: nonlinear problem \Rightarrow Self-consistency required

$$ec{Q} = \sum_{\mu} extbf{ extit{w}}_{\mu} ec{ extbf{ extit{p}}}_{\mu}^{ot}$$

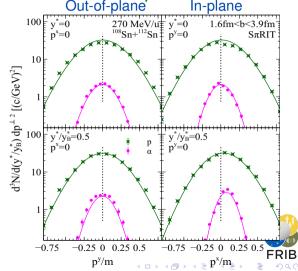

Outcome: Triple-Differential Yields Corrected for Reaction-Plane Resolution & Efficiency


Here, 2D cut through 3D distribution of α particles

2D Cut \perp Beam Axis: Alpha Particles @ $y^* = y_B^*/2$

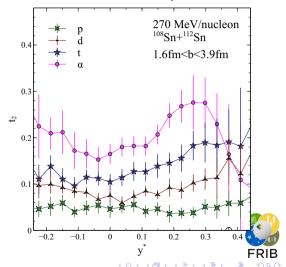
before deblurring

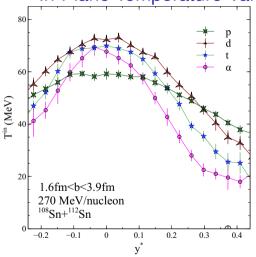
after deblurring: cut loaf of bread


Transverse Spectra Out- and In-Plane: p & α Out-of-plane

Spectra generally always wider out-of-reaction plane than in-plane!

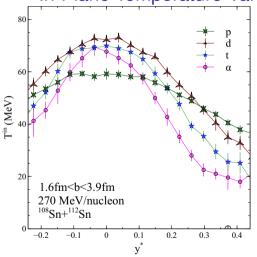

Boost up or down in reaction plane (v_s^X) away from $y^* \sim 0$.


Parametrization accurate up to 15-20%:


$$\frac{d^3N}{dy^*dp_{\perp}^2} \propto \frac{E_{\perp}^*}{E_{\perp}} \exp\left(-\frac{E_{\perp}^* - m}{T(\phi^*)}\right)$$
$$E_{\perp}^* = \gamma_s(E_{\perp}^* - v_s^x p^x)$$
$$\frac{1}{T(\phi^*)} = \frac{1 + t_2 \cos 2\phi^*}{T}$$

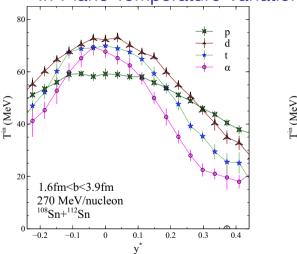
In-Plane Boost v_s^x and Quadrupole Modulation t_2 of Spectral T

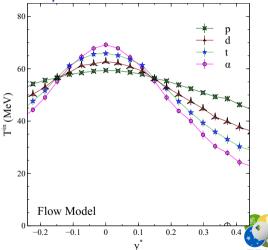
Weak variation for p

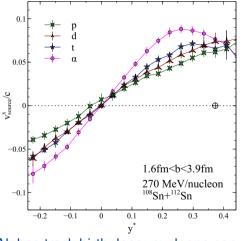

SπRIT Data 0000000000000000

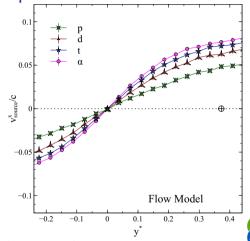
Dramatic variation for α

In-Plane Temperature Variation: Dependence on Mass



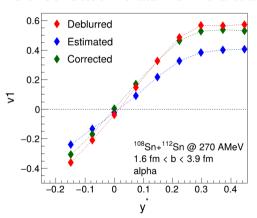

Flow Model: Single velocity field folded w/single spectral temperature field. Local vield ratio fixed at global

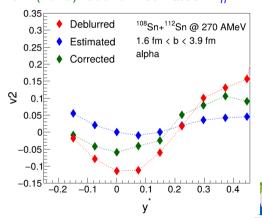


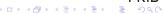


Alphas track central collision region; nucleons can come from anywhere

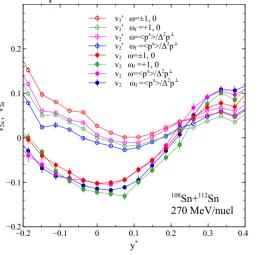
In-Plane Source Boost: Dependence on Mass

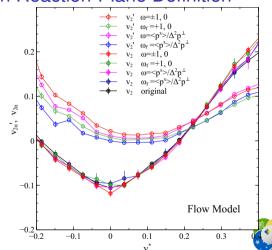

Alphas track birthplace; nucleons can come from anywhere


Back to Rami et al. NPA646(1999)367



Fourier Coefficients v_n : Old vs New


'Old'/Corrected: Kurata-Nishimura et al. PLB871(2025)139970. Estimated - v_0'



Dependence of Restoration on Reaction-Plane Definition

About the same results no matter how the reaction plane is defined!

- Reaction-plane deblurring is reality now! Detector corrections included
- Dominance of reaction plane in azimuthal correlations needed. High multiplicities + high event statistics desirable
- Much action near beam axis!
- Wealth of info & and you can retreat to v_n if you wish
- Clusters look well more promising than nucleons structures more pronounced

few years of development: upcoming Ph.D. Thesis of Jeonghyeok Park (U Korea) & more

PD&Kurata-Nishimura PRC105(22)034608; PD et al. PRC108(23)L051603 Adamczewski-Musch et al. PRL125(20)262301 - v₀ reconstruction f/azimuthal distribution

Supported by US Department of Energy under Grant US DE-SC0019209

