jorannes GUTENBERG ‘ .
UNIVERsTAT v IR ——//ﬁ“
l l Nuclei

Hadrons

CRC 1660

Precision radii of light elements from muonic atoms spectroscopy

using Metallic Magnetic Calorimeters
Frederik Wauters

Johannes Gutenberg University Mainz




Negative muons in matter:

Negative cloud muon
beam at e.g. the Paul
Scherrer Institute
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Energies 200 higher:2 keV — few MeV range

Bohr radii 200 times smaller: significant overlap with the nucleus
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https://www.nature.com/articles/nature09250

Muonic atoms: what is happening here?

Meacuring nuclear finite size effects
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Muonic atoms: what is happening here?

Modern approach with
(low Z) muonic atoms

X-rayQ(10-1000 keN ’,,"



Muonic atoms: what is happening here?

Modern approach with QED, R, ...

(low Z) muonic atoms g
: ; i
é é gm“ e_
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Need a_model and/or data. of the nuclear charge
L distribotion.
2P

Solve Dirac equation with all
ﬁ( 25 - necescary QED contributions™
v Absolute

X-rayO(10-1000 keV 2 _
( N > <r<> Muonic x-ray measurements of

) most stable elements
1S v

— Barrett radii in the Fricke &
Heilig compilations

TPE AKA nuclear polarization ﬂ

For Z>2 a modern & consistent description and error

oa treatment is often missing, beware of the <r2> values in the

standard tables (Angeli etc.)



Muonic atoms: what is happening here?

Modern approach with
(low Z) muonic atoms

QED, R, ...

éé gm“ e_
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Need a_model and/or data. of the nuclear charge
distribotion.
Solve Dirac equation with all

necescary QED contributions
Absolute

X-rayQ(10-1000 keN ’,,"
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Need a nuclear model and moct
applicable way to tackle the

many-body problem NCSM, CC, ...

> <r?>

TPE AKA nuclear polarization

A4°

MPT Heidelberg

NFS input for precision
physics experiments

g-factor measurements at

Ab initio calculation of nuclear structure corrections
in muonic atoms

C. Ji, S. Bacca®**, N. Barnea’, O. J. Hernandez2*5,
N. Nevo-Dinur®

Put ab-initio nuclear theory to the test

Trends of Neutron Skins and Radii of Mirror Nuclei from First
Principles

S.J. Novario, D. Lonardoni, S. Gandolfi, and G. Hagen
Phys. Rev. Lett. 130, 032501 - Published 19 January 2023

Combine with laser spectroscopy
— fundamental constants R , r
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<— Input for svAA = I\ M~1+Fi6<r2

e.9. Thomas (dem
@ MPI Munich

APV with deformed nuclei



Muonic atoms: what is happening here?

15,
Calibrating isotopic chain &

. Improving radii for Vud
measurements + crossing Z

"B Charge radii in isospin triplet
Isospin < charge radii differences
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Heidelberg: NFS effecte

Precision Trap

@

Ar — p — C(E) — ft — Ft
Combine muonic radii with

eIeCtronic atom SPeCtroscoPy a-nd i /'/,HE,CI' ;‘pectro;capy in e.9. Mainz Robust treatment of finite nuclear size effects reduces CKM unitarity deficit
Precision trap experiment and Munich Mikhail Gorchtein,"2* Vaibhav Katyal,> B. Ohayon,* B. K. Sahoo,? ! and Chien-Yeah Seng® 7%




Two Photon Exchange
Nuclear Finite Size
Bound State QED

(B)SM precicion fects

NuPEC
r

Particle Masses

Applications

A

C LTP version
1

Fundamental Constants
Global Symmetries
Discrete Symmetries
BSM Physics

QCD, QED, Graviy e —

Future possibilities

Hadronic Atoms

Leptonic Atoms
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Experimental situation

Q Precision muonic atom data for Z=1,2 by the CREMA collaboration E (2P-15) keV
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Ultimate precision, however limited the
exotic atom transition in-range of
lasers and meta-stable initial states
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https://inspirehep.net/literature/1216601
https://doi.org/10.1126/science.aaf2468
https://doi.org/10.1038/s41586-021-03183-1
https://arxiv.org/abs/2305.11679

Experimental situation

E (2P-1S) keV

8 33 75 134 207 297

Q Most of the stable nuclei have been measured with HPGe (70s / 80s) ' T ‘
a Z>10 limited by Nuclear polarization / nuclear charge @ plaser
distribution

4 Z<10 limited by HPGe resolution ol ® uX-ray (HPGe) | |

Q Precision muonic atom data for Z=1,2 by the CREMA collaboration
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Fricke and Heilig recipe 14,15
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https://doi.org/10.1006/adnd.1995.1007

Experimental situation

A need for efficient, broadband, and
high-resolution X-ray detectors  E (2P-1S) keV

Q Precision muonic atom data for Z=1,2
8 33 75 134 207 297
Q Most of the stable nuclei have been measured with HPGe (70s / 80s) ! T ‘ !
a Z>10 limited by Nuclear polarization / nuclear charge @ plaser
distribution © El. Scattering
a Z<10 limited by HPGe resolution sl ® px-ray (HPGe) | |
@ pX-ray (Crystal)
19 . - ) . '
4 |% precise radii from e-scattering to fill the gap ’/ S uX-ray (MMC)
gl
T | B
b ZO,ZZNe
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103 e —_
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® 3He 24,26Mg
e H
T .D 1 ! | /I
2 4 6 8 10 12

11



Experimental situation

A need for efficient, broadband, and

O Precision muonic atom data for Z=1,2 high-resolution X-ray detectors E (2P-1S) keV

8 33 75 134 207 297

Q Most of the stable nuclei have been measured with HPGe (70s / 80s) ‘ !

a Z>10 limited by Nuclear polarization / nuclear charge @ plaser

distribution © El. Scattering
a Z<10 limited by HPGe resolution &
Y 102l @ uX-ray (HPGe) | |
@ pX-ray (Crystal)
Q ~1% precise radii from e-scattering to fill the gap S uX-ray (MMC)
a Need for a |-10 ppm precise energy determination if 2p|s transitions.
L
Limitations of solid state X-ray detectors: =
D = |FN © 20,22\ e
Go =1V Y @ —
| S/IN with ENC a few 100 e- ® ® '\°
. e e
Unit of heat < Unit of lonization: @*He ®
O AT=E,__ /C ®:pie Mg
deposited tot ()
Qd  AT/T large — operate < 0.1 K H
a A very good temperature sensor ¢ T o, T
2 4 6 8 10 12
z




Experimental situation

Unit of heat < Unit of lonization
a AT=E, . . IC
eposited tot

d  AT/T large — operate < 0.1 K
a A very good temperature sensor

Metallic Magnetic Calorimeters — Unit of spin flip € Unit of lonization
0 Paramagnetic Ag:Er Alloy
a AP, = 8M/ET AT = 8M/8T x E /

deposited Ctot

Thermal Bath U

Magnetization of paramagnetic material, MMC

M
[ — \\
Tae — [
-

METALLIC MAGNETIC CALORIMETERS

KIRCHHOFF-
INSTITUT

Inrecent years there has been important progress in Astro- and Particle Physicswhich has led to a deeper understanding of the f
and the nature of the universe. Much of the experimental progress was only possible due to technological developments in other a
computer science. In the vein of these developments the new technology of cryogenic particle detectors are about to make impor

mental propertie
s, like opics, elec
contribution
of astrophysics experiments. Examples are the search for dark matter, the observation of the cosmic microwave background and several projects inx-ray
astronomy. But not only in astrophysics experiments such detectors have high potential, there are also attractive application possibilities in atomic and nuclear
physics.

o

https://arxiv.org/abs/2005. 13340

MaXe-""* censors developed by HD-KIP for e.g. 400 I sy {
the ECHO/TAXO experiment, cee D. Unger et al.,
AbG prof. Dr. Gastaldo, Dr. A. Fleischmann
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https://www.kip.uni-heidelberg.de/tt-detektoren/?lang=en
https://arxiv.org/abs/2111.09945
https://arxiv.org/abs/2005.13340

Spectroscopy with MMCs

Hadrons

CRC 1660

Quartet: precision muonic X-ray spectroscopy on low Z nuclei with MMCs

https:/doi.org/10.1007/s10909-024-03 14| -x https://doi.org/10.3390/physics6010015
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https://doi.org/10.1007/s10909-024-03141-x
https://doi.org/10.3390/physics6010015

Spectroscopy with MMCs

Quartet: MMC from the basement to an online experimental environment

— 2023 test beam at PSI..

YVY

Accelerator facility
Beamline elements
Neutron / electron / x-ray
backgrounds

(correlated and
uncorrelated to the muon)
Limited beamtime

15



Spectroscopy with MMCs

Quartet: MMC from the basement to an online experimental environment

>

Accelerator facility
Beamline elements
Neutron / electron / x-ray
backgrounds

(correlated and
uncorrelated to the muon)
Limited beamtime
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Spectroscopy with MMCs

Quartet: MMC from the basement to an online experimental environment
— 2023 test beam at PSI.
— First 6Li and 7Li measurements. Yec, MMC work at a secondary beamline at PST/
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Spectroscopy with MMCs

Quartet: MMC from the basement to an online experimental environment

— 2023 test beam at PSI.
— First 6Li and 7Li measurements.
— Full proposal + two week 2024 Physics beamtime with °Li, ’Li, °Be, '°B, ''B
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Spectroscopy with MMCs

Quartet: MMC from the basement to an online experimental environment
— 2023 test beam at PSI.
— First 6Li and 7Li measurements.
— Full proposal + two week 2024 Physics beamtime with °Li, ’Li, °Be, '°B, ''B
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0.1-0.5 el/ (ctatictical) censitivity 400! WL, e o
- ol%s. 3-2

1200 |
Mo(Kez)

Mo(Ker) W Liy_q 300

Lithium Spectrum Fitting 2p1¢ with full hyperfine ctrocture

700
Muon Beam

detectors

600 7-6

500

@
N
N
-
(%))

400

H
\
300 )
200 e
3He/4H 100
with M el

18550 18600 18650 18700 18750 18800 18850
Energy (eV)

UL UL

0
3

Counts

Target chamber

HPGe detector

N

ol
34 51 52 53 54 1 9
Energy (keV) Energy (keV)




Spectroscopy with MMCs

MMC with muonic atoms: low-temperature quantum sensors in beam-on-target experiment
(Not that easy ... ) — Combine data from 64 pixels
— Every x-ray cascade comes with a 50 MeV e- from p-decay
— < |0 pmm accuracy envisioned

Each x-ray of interect comegswith a 50 MeV electron from p-decay
Temperature correction: Correct each pixel for back fo its stable working point

c 80 20
o Raw data M
g 70 m Temperature corrected data w0
[2]
g —p> s -
8 601 > FWHM: ~15eV [
@ 60 keV )
50 3
T " “
40 " ‘
30| - P
= % [ 3
20 Very stable readout electronics needed. With 16-bit: O £ < (5B
oo
10 T T T T e
15 | Kanal 1
o) Kanal 3 80
0.996  0.998 1 1.002 1.004 2;’:]‘;:5 I
Relative amplitude 104 Kanal 9 .l{ S

—— Kanal 11

Kanal 15

INL [LSB]

1
SQUID loop
o
= o

thermal bath

20

Eingangsspannung [V]



Spectroscopy with MMCs

MMC with muonic atoms: low-temperature quantum sensors in beam-on-target experiment
(Not that easy ... ) — Combine data from 64 pixels
— Every x-ray cascade comes with a 50 MeV e- from p-decay
— < |0 pmm accuracy envisioned

Each x-ray of interect comes with a 50 MeV electron from p-decay
Temperature correction: Correct each pixel for back fo its stable working point

c 80 »
é Raw data M
g 70E m Temperature corrected data 8
—) \\ " -
Full range E calibration under /\
» control to 20 ppm or better 7 T : \
S , _ T Producing new detector with \
o L B faster thermalization
i ) T Very stable readout electronics needed. With 16-bit: O £ < (S8
mﬂ;/- Wi Kt 15 | ‘ ‘ ‘ Kanal 1‘ ‘
E 1 1 1 I i Kanal 3
> s - Kanal 5 ]
2% P ¥ 10 ‘{ _ 53”3:7; ld
W 8 . Iy
7 .
e 00 a0 e a0 o a0 8 Working with Struck Gmbh to

INL [LSB]

produce |8-bit ADC modules

N %
: (L A4
thermal bath
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. . . . .
2 1 0 1 2
Eingangsspannung [V]




Radii of light nuclei

E (2P-1S) keV
8 33 75 134 207 297
70 @ plaser
:6 . 9Be © El. Scattering
Li ) @B °
102k pX-ray (HPGe) | |
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Radii of light nuclei

Isotope Currento__ (E) Goal o(E) — o(r) Nuclear polarization
SLi/"Li ~0.1- 0.2eV 0.05 eV— 0.3 fm 0.1-0.2 eV Ab-inco from S.Bacca et al.
°Be ~0.2eV 0.1eV—0.2fm 0.5-1 eV
z
g @
108/1B <0.5eV 0.1eV—-0.2fm ~1TeV 2 g
& B,
g 5
12¢/13¢ 2025 campaign 0.2eV—0.2fm 2eV B 8
R
14N (2025 campaign) 0.2eV—0.3fm ~3-4 eV E_ﬁ’i
%0/('70)/'80 2025 campaign 0.2eV—0.3fm ~5-8 eV
10Be Nuclear polarization Nucleon polarization
19F Z Two photon exchange
Futu re: Zemach/Friar radii
. 20Ne and improved Li/Be/B - Polarizability
54Mn NRQED

Perturbative QED All order QED 23
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Significant progress (expected) all over the nuclear chart UNIVERSITAT

A Light nuclei with Quartet / MMC detectors
3 Modern HPGe detector array at PSI and

JGlu

All aiming for ~0.1 %

O A novel HD-transfer target for ug targets accuracy on charge radii
Future:
3 Li,B, Be, ... dataunder analysis o
[  Push MMC + muonic-rays combo to the limits %\/@ Fom pvsic
A Eying "Be-"Li, ®B-8Li, '®Ne-'80, '"F-'"Ne mirror pairs (Vud NFS corrections) ‘, PSI
A  '°Be combining MMC with transfer target
Q
Q

Work in progress: consistent description for A=6— ... . KATHOLIEKE UNIVERSITEIT
Laboratoire Kastler Brossel LEUVEN
26/27A|, 28/29/305i, |08mAg' ... reference radii — Physique quantique et applications
Yoo

Some challenges & needs: V¥ it NXVA

UNIVERSIDADE NOVA
ogy DE LISBOA

A Run MMC at optimal performance with muon stopping target at moderater;'TﬁFéﬁ rates
@O  Need NP input to go from E to <r?> from A=6— ...

24


https://doi.org/10.1146/annurev-nucl-102622-020726

