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UNDERSTAND MATTER IN EXTREME CONDITIONS

universe before the formation of the CMB 
( , ) is invisible to us; 

nucleons formed during this time
t ≲ 3 × 105 y T ≳ 1 eV

study hot QCD matter to understand 
formation of nuclear matter in the universe



UNDERSTAND MATTER IN EXTREME CONDITIONS

neutron stars can reach densities of several times the 
nuclear saturation density ( , )n ≈ 5n0 μB ≈ 1.5 GeV

[ChatGPT/DALL-E]

study dense QCD matter to understand 
neutron stars & their mergers
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?

theoretical challenges:

• strong coupling: non-
perturbative

• sign problem at finite density: 
lattice QCD of limited use

• different degrees of freedom 
in different phases: EFTs of 
limited use

use functional methods
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neutron stars

Experiments:

heavy-ion collisions

multi-messenger astronomy



QCD PHASE DIAGRAM IN THIS TALK

THE PHASES OF QCD

hadrons
color superconductor
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early universe & LHC

RHIC

Experiments:

heavy-ion collisions

multi-messenger astronomy

• location of phase transitions?  CEP

• what happens at large ?  the moat regime & pattern formation

→
μB →

open questions



THE QCD CRITICAL POINT



FUNCTIONAL METHODS

The path integral encodes all possible 
correlation functions of a QFT

Z[J] = ∫ 𝒟φ eiS[φ] + i ∫x J(x)φ(x)

⟨φ⋯φ⟩ ∼
δ
δJ

⋯
δ
δJ

Z[J]
J=0

functional methods provide exact relations for correlation functions: DSE & FRG

solving a QFT  
knowing all correlation functions

⇔



FUNCTIONAL METHODS

The path integral encodes all possible 
correlation functions of a QFT

Z[J] = ∫ 𝒟φ eiS[φ] + i ∫x J(x)φ(x)

⟨φ⋯φ⟩ ∼
δ
δJ

⋯
δ
δJ

Z[J]
J=0

realizes Wilson's RG idea of successively integrating out quantum fluctuations [Nobel Prize in 1982]

ΓΛ = S Γk Γ0 = Γ

 incorporates all quantum 
fluctuations down to scale 
Γk

k
start from "microscopic" QCD action 
at  (perturbative QCD)Λ ≫ 1 GeV

full effective action including 
all quantum fluctuations

Γ[ϕ] = supJ{∫x
J(x) ϕ − ln Z[J]}

ϕ =
δZ[J]

δJ

solving a QFT  
knowing all correlation functions

⇔

∂kΓk[ϕ] =
1
2

Tr[( δΓk[ϕ]
δϕ δϕ

+ Rk)
−1

⋅ ∂kRk] =
1
2

FRG: introduce mass-like regulator  that cuts-off field modes with momenta   flow equationRk p2 ≲ k2 ⟶

 [Wetterich 1993]

functional methods provide exact relations for correlation functions: DSE & FRG



FUNCTIONAL METHODS

[Pawlowski, arXiv:0512261]
[Gies, arXiv:0611146]
[Rosten, arXiv:1003.1366]
[Braun, arXiv:1108.4449]
[Dupuis at al., arXiv:2006.04853]
[Fu, arXiv:2205.00468]

[Alkofer, von Smekal, arXiv:0007355]
[Fischer, arXiv:0605173]
[Roberts, Schmidt, arXiv:0005064]
[Eichmann at al, arXiv:1606.09602]
[Fischer, arXiv:1810.12938 ]
[Huber, arXiv:1808.05227]

FRG DSE

• define infinite tower of coupled equations for all correlation functions: truncations necessary 

• no sign problem: finite density, real time and complex parameter spaces are all directly accessible

• one/two-loop exact: both intuition and techniques can be leveraged

QCD related reviews:



potentially large systematic 
error for one given calculation

QCD PHASE DIAGRAM & THE CEP 

• show only results that agree with lattice 
data at 

• need to improve/check systematics for 
 (work in progress), but good 

agreement between different methods 
and approximations 

μB = 0

μB/T ≳ 4

CEP at (T, μB) ≈ (110, 630) MeV

• indications for a new feature: the moat 
regime (more on that later)

Results for the chiral transition from direct computations in QCD

[Fu, Pawlowski, FR, PRD 101 (2019)]

not computed



not computed

FRG & DSE results corroborated by subsequent extrapolations of lattice data

conformal Padé [Basar, PRC 110 (2024)]

multi-point Padé [Clarke et al., 2405.10196]

using Yang-Lee edge singularities:

 results + continuum estimateNτ = 6

using thermodynamics:

constant entropy density [Shah et al. 2410.16206]

holography [Hippert et al., PRD 110 (2023)]
(agrees with [Cai et al., PRD 106 (2022)])

QCD PHASE DIAGRAM & THE CEP 

CEP location well constrained 
by now and it's in FAIR range!

sNN ≈ 3.6 − 4.1 GeV



SEARCH FOR THE CEP: HEAVY-ION COLLISIONS

[D. Fehrenz, GSI/FAIR (2024)]

imprints of phase structure at freeze-out?



CRITICAL PHENOMENA & UNIVERSALITY
Second order phase transition: correlation length diverges

μ

CRITICAL PHENOMENA & UNIVERSALITY

Near the critical point the system is scale invariant and microscopic details are irrelevant 

2nd order transition: 
ξ → ∞

fluctuations on all length scales

critical opalescence of ethane [Wikipedia]

correlation length

T < Tc T = Tc T > Tc



CRITICAL PHENOMENA & UNIVERSALITY
Second order phase transition: correlation length diverges

μ

CRITICAL PHENOMENA & UNIVERSALITY

Near the critical point the system is scale invariant and microscopic details are irrelevant 

2nd order transition: 
ξ → ∞

fluctuations on all length scales

critical opalescence of ethane [Wikipedia]

correlation length

T < Tc T = Tc T > Tc

example: 
liquid-gas transition

= 
3d Ising

 = 
QCD CEP
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We can re-express the van der Waals equation of state (2.1) in a form independent of the

model dependent parameters using rescaled variables P̄ = P
Pc

, V̄ = V
Vc

, and T̄ = T
Tc

:

Å
P̄ +

3

V̄

ãÅ
V̄ �

1
3

ã
=

8
3

T̄ (2.2)

Regardless of the physical differences which produce different critical temperatures, pres-

sures, and volumes, every system can be described via the above equation of state. Here, all

critical values are unity, P̄c = T̄c = V̄c = 1. Pushing this observation further, it was predicted

that the expression in Eq. (2.2) was a universal equation of state for all fluids - the law of corre-

sponding states. Though the van der Waals equation does capture qualitative features of this
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Figure 2.3: The Guggenheim plot

phase transition, it does not do so well quan-

titatively. In defense of this idea though -

that there is an underlying universality for

all fluids - there is a famous plot dating back

to 1945, the Guggenheim plot [48], see Fig.

2.3. This plot compares various gases near

the critical point by plotting the rescaled

temperature vs the rescaled density (de-

noted n in the plot). Amazingly, one does

indeed see that all the data falls on the same,

seemingly universal, curve. However, there

is a clear discrepancy between the data and

the van der Waals (vdW in the plot) predic-

tion although it does a surprisingly good job.

Lastly, this idea of universality is central to

this thesis and can be set on a rigorous foot-

ing using the concept of the renormalization group, but more on this later.

2.2.1 Basic universal data

Common to the discussion of universality is a set of universal critical exponents, some of

which are loosely defined below, which detail how properties of the system near criticality

11

[Guggenheim plot (1945)]

Universality: main features of the system are described by universal critical exponents,  e.g.,   ξ ∼ (T − Tc)−ν



CAN WE OBSERVE SCALING NEAR THE CEP?

theory

• net-baryon susceptibilities from the pressure 

χB
n = Tn−4 ∂np

∂μn
B

•  scale near CEP,  e.g.,  

• scaling near the CEP: non-monotonic beam-
energy dependence of kurtosis 

χn χ4 ∼ ξ7

∼ RB
42 = χ4/χ2

What should we see in the BES?

M. Stephanov (UIC) QCD Phase Diagram and BES BNL 2015 11 / 17

What should we see in the BES?

M. Stephanov (UIC) QCD Phase Diagram and BES BNL 2015 11 / 17

[Stephanov, PRL 102 (2009)]

measurements can be sensitive to critical fluctuations, but there are many caveats and subtleties!

experiment: heavy-ion collisions

• measure net-proton distributions P(NP)

[STAR (2021)]

• net-proton susceptibilities from the distribution

χP
n ∼ ∑

NP

[(NP − ⟨NP⟩)n + ⋯] P(NP)
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FIG. 1. Event-by-event net-proton number distributions for head-on
(0-5% central) Au+Au collisions for nine

p
sNN values measured by

STAR. The distributions are normalized to the total number of events
at each

p
sNN. The statistical uncertainties are smaller than the sym-

bol sizes and the lines are shown to guide the eye. The distributions
in this figure are not corrected for proton and anti-proton detection
efficiency. The deviation of the distribution for

p
sNN = 54.4 GeV

from the general energy dependence trend is understood to be due to
the reconstruction efficiency of protons and anti-protons being dif-
ferent compared to other energies.

inverse hyperbolic tangent of the component of speed parallel
to the beam direction in units of the speed of light. The pre-
cise measurement of dE/dx with a resolution of 7% in Au+Au
collisions allows for a clear identification of protons up to 800
MeV/c in transverse momentum (pT). The identification for
larger pT (up to 2 GeV/c, with purity above 97%) is made by
a Time Of Flight detector (TOF) [34] having a timing resolu-
tion of better than 100 ps. A minimum pT threshold of 400
MeV/c and a maximum distance of closest approach to the
collision vertex of 1 cm for each p( p̄) candidate track is used
to suppress contamination from secondaries and other back-
grounds [15, 35]. This pT acceptance accounts for approx-
imately 80% of the total p + p̄ multiplicity at mid-rapidity.
This is a significant improvement from the results previously
reported [35] which only had the p + p̄ measured using the
TPC. The observation of non-monotonic variation of the kur-
tosis times variance (ks2) with energy is much more signif-
icant with the increased acceptance. For the rapidity depen-
dence of the observable see Supplemental Material [34].

Figure 1 shows the event-by-event net-proton (Np �Np̄ =
DNp) distributions obtained by measuring the number of pro-
tons (Np) and anti-protons (Np̄) at mid-rapidity (|y| < 0.5) in
the transverse momentum range 0.4 < pT (GeV/c)< 2.0 for
Au+Au collisions at various

p
sNN. To study the shape of

the event-by-event net-proton distribution in detail, cumulants
(Cn) of various orders are calculated, where C1 = M, C2 = s2,
C3 = Ss3 and C4 = ks4.

Figure 2 shows the net-proton cumulants (Cn) as a func-
tion of

p
sNN for central and peripheral (see Supplemental

Material [34] for a magnified version). Au+Au collisions.
The cumulants are corrected for the multiplicity variations
arising due to finite impact parameter range for the measure-
ments [7]. These corrections suppress the volume fluctuations
considerably [7, 36]. A different volume fluctuation correc-
tion method [37] has been applied to the 0-5% central Au+Au
collision data and the results were found to be consistent with
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FIG. 2. Cumulants (Cn) of the net-proton distributions for central
(0-5%) and peripheral (70-80%) Au+Au collisions as a function of
collision energy. The transverse momentum (pT) range for the mea-
surements is from 0.4 to 2 GeV/c and the rapidity (y) range is -0.5 <
y < 0.5.

those shown in Fig 2 . The cumulants are also corrected for
finite track reconstruction efficiencies of the TPC and TOF
detectors. This is done by assuming a binomial response of
the two detectors [35, 38]. A cross-check using a different
method based on unfolding [34] of the distributions for central
Au+Au collisions at

p
sNN = 200 GeV has been found to give

values consistent with the cumulants shown in Fig. 2. Further,
the efficiency correction method used has been verified in a
Monte Carlo calculation. Typical values for the efficiencies
in the TPC (TOF-matching) for the momentum range stud-
ied in 0-5% central Au+Au collisions at

p
sNN = 7.7 GeV are

83%(72%) and 81%(70%) for the protons and anti-protons,
respectively. The corresponding efficiencies for

p
sNN = 200

GeV collisions are 62%(69%) and 60%(68%) for the protons
and anti-protons, respectively. The statistical uncertainties
are obtained using both a bootstrap approach [28, 38] and
the Delta theorem [28, 38, 39] method. The systematic un-
certainties are estimated by varying the experimental require-
ments to reconstruct p ( p̄) in the TPC and TOF. These require-
ments include the distance of the proton and anti-proton tracks
from the primary vertex position, track quality reflected by the
number of TPC space points used in the track reconstruction,
the particle identification criteria passing certain selection cri-
teria, and the uncertainties in estimating the reconstruction ef-
ficiencies. The systematic uncertainties at different collision
energies are uncorrelated.

The large values of C3 and C4 for central Au+Au collisions
show that the distributions have non-Gaussian shapes, a possi-
ble indication of enhanced fluctuations arising from a possible
critical point [11, 22]. The corresponding values for periph-



RIPPLES OF THE CEP

Comparison to BES-II

• In comparison to BES-I, BES-II results are better consistent 
with the theoretical prediction. 

• Results in the energy regime of fixed-target experiments, i.e. 
3 GeV 7.7 GeV, are now very important!! It will 
finally tell us whether there is a CEP.

≲ sNN ≲

Net baryon (proton) 
number Kurtosis:

14

FRG: low-energy model with QCD and HIC input

• pronounced non-monotonicity at low beam-
energies, but no scaling

• need data between :  FAIR 

• need better observables (smoking gun)?

sNN = 3 − 8 GeV

• CEP location encoded in the peak height

• no sign of the CEP in experimental data yet

criticality not necessary for non-monotonic 
 dependence of sNN R42

[Fu, Luo, Pawlowski, FR, Yin, PRD 111 (2023)]



THE MOAT REGIME



THE MOAT REGIME

(static) boson dispersion is minimal at nonzero momentum

E(p2) = Z(p2) p2 + m2 ≈ z p2 + wp4 + 𝒪(p6) + m2

z = 1
z = 0.5
z = -0.6
z = -2.1

0 50 100 150 200 250
100

120

140

160

180

200

220

p [MeV]

E
[M
eV

] moat regime

"gain energy by going faster"

[Pisarski, FR, PRL 127 (2021)]

spatial modulationsfavored momentum

G( | p | ) G( |x | )

1/G(p0 = 0, p2) =



THE MOAT REGIMES IN QCD

• moat appears in static mesonic dispersion; regime appears to depend slightly on the species

• the lighter the meson, the stronger the signal  pions are good probes→

[Fu, Pawlowski, Pisarski, FR, Wen, Yin, 2412.15949]

cf. [Töpfel, Pawlowski, Braun, 2412.16059]

evidence for spatial modulations in the phase diagram



MOATS & PATTERNS
Moat regime indicates pattern formation in dense QCD matter

QCD at small μB QCD at large μB



point agrees with general analysis [2–4, 66–71]. We also discuss in the next section why

m
2
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! �1 as Z ! 0+.

Z
m
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〈 φ 〉 ≠ 0

〈 φ 〉 = 0, OSP

〈 φ 〉 = 0, QSL

FIG. 1. The phase diagram at large N , in the plane of the bare mass squared, m2, and the wave

function renormalization constant, Z, for positive quartic coupling � = 1. In terms of the global

order parameter, there is just the broken phase, where h�i 6= 0, and the symmetric phase, where

h�i = 0. Nevertheless, there are two parts to the symmetric phase: an ordinary symmetric phase

(OSP) and the quantum spin liquid (QSL). In the OSP the two point function of � is the usual

exponential, Eq. (60), while in the QSL it also oscillates, Eq. (65). The solid line in the upper left

quadrant is a line of second order phase transitions. The dashed line in the upper half plane is the

boundary between the OSP and the QSL, which is not a phase transition.

B. Quantum spin liquid

The solution for the e↵ective mass obscures interesting physics associated with how the

masses m+ and m� change as the bare mass and Z are varied.

We assume that m
2 is positive and fixed, and vary Z. The extension to negative m

2

17

0

Z

m2

adapted phase diagram from large-  limit
 [Pisarski, Tsvelik, Valgushev (2020)]

N

⟨ϕ⟩ ≠ 0

moat
⟨ϕ⟩ = 0

ordinary
⟨ϕ⟩ = 0

MOATS & PATTERNS - A TOY MODEL

 theory with -term:ϕ4 p4

ℋ =
Z
2 (∇ϕ)2 +

W
2 (∇2ϕ)2 +

m2

2
ϕ2 +

λ
4!

ϕ4

[Harhoff, FR, Riedel, Schlichting (in preparation)]
3+1d simulations: [Valgushev, Winstel, APP B 17 (2024)]

related system: [Schindler et al., PRD 102 (2019)]

simulation on a 2+1d lattice: different patterns emerge, 
depending on choice of bare parameters  and Z m2

preliminary results

NB: in reaction-diffusion systems these 
are known as Turing patterns

spotted 
moat

wormy
moat

ϕ(x, y)



IMPLICATIONS OF THE MOAT
The energy gap might close:

E

p20

 for all E > 0 p2  at :E = 0 p2 > 0

E

p20
k2

0

?



IMPLICATIONS OF THE MOAT
The energy gap might close:

instability towards formation of an 
inhomogeneous condensate

E

p20

 for all E > 0 p2  at :E = 0 p2 > 0

E

p20
k2

0

common feature of low-
energy models,

?

DSE: [Motta, Buballa, Fischer, PRD 108 (2023) & 2411.02285)]
FRG: [Fu, Pawlowski, Pisarski, FR, Wen, Yin, 2412.15949]

Inhomogeneous phase

Moat
regime

Broken phase

Restored phase

Lifshitz
point

Disorder line

[Nussinov, Ogilvie, Pannullo, Pisarski, 
FR, Schindler, Winstel, 2410.22418]

• many types of inhomogeneous phases possible (crystals, 
liquid crystals, ... depends on which spatial symmetries are broken)

• in any case, they are always accompanied by a moat regime

adapted from [Koenigstein et al., Phys. A 55 (2021)]



SEARCH FOR MOATS IN HICS
intuitive idea

Characteristic feature of moats: particles with minimal energy at nonzero momentum 

 modified particle production at nonzero momentum⟹

[Pisarski, FR, PRL 127 (2021)]

• description of particle production requires knowledge of real-time correlation functions

• directly accessible with the FRG [Floerchinger, JHEP 1025 (2012); Kamikado, Strodthoff, von Smekal, Wambach, EPJ C74 (2014), ...]

[Fu, Pawlowski, Pisarski, FR, Wen, Yin, 2412.15949]

pion spectral function in the moat regime 
quasi-particle like peak in the spacelike region:

the "moaton"



Two-pion correlations generated by interference: HBT correlations

[FR, Pisarski, Rischke, PRD 107 (2023)] 

 C(P, ΔP) ∼ ∫X,P0

e−iΔP⋅X f(X, P) ρ(X, P)

HANBURY-BROWN-TWISS CORRELATIONS
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Contribution to the dilepton rate from pions/moatons:

DILEPTON PRODUCTION

Πμν = γμ γν

π+

π−

d4R
dp4

∼ Im Πμν(p)

[Nussinov, Ogilvie, Pannullo, Pisarski, FR, Schindler, Winstel, 2410.22418]
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SUMMARY

functional methods provide new insights into the QCD phase diagram

determination of the CEP location directly in QCD from first principles

• different calculations with different systematics show good agreement

• subsequent confirmed by extrapolations of lattice data

• smoking-gun signals for CEP in HICs still missing

reveal new feature of the phase diagram at large : the moat regimeμB

• indicates the formation of patterns/crystalline structures

• also natural consequence of emergent  symmetry in finite-density QCDCK
[Schindler, Schindler, Medina, Ogilvie, PRD 102 (2019)]
[Haensch, FR, von Smekal, PRD 110 (2023)]
[Winstel, PRD 110 (2024)]

• can leave signatures in particle correlations and the dilepton rate


