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Dark matter nature — hypothesis

Several main explanations for the dark matter
**Baryonic nature (MACHOs, PBH)
**Modified gravity (MOND)

**New particle models (neutrino, SUSY, axion, WIMPs,...)
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Dark matter nature — hypothesis

Several main explanations for the dark matter

QDMhZ ~ 0112
WMAP

**Baryonic nature (MACHOs, PBH)
**Modified gravity (MOND)

’ O h? >~ 0.1 x (
**New particle models (neutrino, SUSY, axion, WIMPs,...)
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Dark Matter detection

3 COMPLEMENTARY ways to probe the
particle nature of Dark Matter

Collider

Direct detection

Indirect detection
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Dark Matter detection - indirect

DM particles annihilate/decay into SM particles: we can
xx < U, qq, .. detect them! The questions are: Where, What and How?

Cosmic rays

Multi-messenger CR fluxes measured by experiments
are a powerful tool to test propagation models and dark
matter hypotheses.

Few channels are considered “golden-probe”:
* Low-energy (anti-)nuclei (low statistic, low background)
* Antiprotons (high statistics, high background)

Indirect detection Question is: do we know how many CR are

produced and accelerated in the Galaxy? And
how many of them reach our detectors ?
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CR production and propagation

Fundamental belief: majority of CR arriving @Earth have Galactic origin (observation with EGRET)
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CR production and propagation

. . . . Spallation
* |ISM ~1 particle/cm3composed of Hydrogen (90%) and Helium f disintegration [ i )p t
- (Halo+Disc) iSC,
(10%) /"- B\\
 Galactic halo ~20 kpc Q.. wz)

v+

* Galactic disk ~0.2 kpc

» Diffusive Turbulent propagation
* Alfven velocities

* Reacceleration and galactic wind L=3-10 kpc
e Solar wind

h=0.1 kpc i

CR are then divided in 2 main categories, depending on their
production, that share the same propagation destiny:

1. Primary

2. Secondary ’

(+ tertiary)
(Halo+Disc)

Diffusion on magnetic inhomogeneities Acceleration by shock waves

0.6 -2.2

doi:10.3847/1538-4365/ab4b58 E
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Antiproton production
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Antiproton production

% Wi, £ b, J. Heseig ,
\ MIAPP2022

interactions
(hadronization)

f= fg (2 + As + 2A4)
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Antiproton production
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Unprecedented results from AMS-02
at few percent level error

~Flat ratio antiproton/proton with
rigidity

NO cosmic primary source. Produced
by spallation processes
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CR propagation equation and source term
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CR propagation equation and source term
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CR propagation equation and source term

SOURCE TERM
W(T’,% t) ﬁ _ (Dmmﬁd) . f/’d)) Full propagation equation
ot Typically solved in stationary
0, 01  d[.  peo = 11 dition @ — 0
— D __[ _(V-V ]__ = condition
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CR propagation equation and source term

SOURCE TERM

= Dmﬁ?ﬁ’ _ f/'d)) Full propagation equation
Typically solved in stationary
0 S o 1 1 L dY
= — _ V.V ]__ = condition— =0
0= g [P0 =5V V| - —o - v z

Pure primary CR source term

QZ(w)p) — Q’i(ra < R) — qo,’iqf“,z(ra Z)QR(R)
R =pc/Ze gr(R) o< (R)™
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CR propagation equation and source term

SOURCE TERM

D,V — V{(b) Full propagation equation

Typically solved in stationary

0 = 1 1 LAY
__gw — - [p?,b — =(V- V)Q’[)] — —p— —) condition — =0
Tf Ty
Pure primary CR source term

QZ(w)p) — Q’i(rr‘) < R) — qo,’iqf“,z(ra Z)QR(R)
R =pc/Ze gr(R) o< (R)™

| Pure secondary CR source term (e.g. antiprotons)

> dO'i'
qij (Ts) = f dT; 4w nisM,j Q%‘ (Tz) d—TJ (Ti;Ts)
Tth S
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CR propagation equation and source term

SOURCE TERM

Dmﬁ’q’b — 171{[;) Full propagation equation
Typically solved in stationary
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Pure primary CR source term
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| Pure secondary CR source term (e.g. antiprotons)
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Antiproton production cross section

Which are the main contributor to the > dO’z‘j
antiprotons production? dij (Ts) = dT; 4mngsm,; @i (Tz) aT (Tza 1)
Tth S
i+j »p+X

doi:10.1103/PhysRevD.97.103019
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Antiproton production cross section
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Antiproton production cross section

Which are the main contributor to the > do'z-j
antiprotons production? qij (Ts) — dTi 4 NISM,j sz (Tz) dT (Tza Ts)
IIII| | IIIIII| | | T 1Tl | I T T T Tth S
10° = = [ +] - ﬁ + X
- o]
i " 90% of the reactions involve p and
S i —] Helium (main ISM component)
— _ / pHe
5 10 ! = CNO 3
Q -
'_E n —— — Here .
S ——— NeMasi 1 p+p-oP+X NA61 NA49 /Syy ~ 6.3,7.7, 8.8,
N - el 12.3 and 17.3 GeV;
o _:(—7 :
= ) i p+He—->p+X LHCb ./syy~110GeV (2017)
i LiBeB Aeauy ISM— . . )
| — | Scarcity of data, especially in the relevant energy
| I]I-I00 | L1 1 Iilo:l | Ii-l02 | 1 L1 1 Ii-l03 regime for AMS_OZ

T5[GeV]
doi:10.1103/PhysRevD.97.103019

13/03/2025 DAVIDE GIORDANO @DPG-FRUHJAHRSTAGUNG 2025



The AMBER experiment @CERN

In 2019 the AMBER collaboration proposes to establish a “New QCD facility at the M2 beam line of the CERN SPS” (Lol:
http://arxiv.org/abs/1808.00848).

<l ¥ )

ks SR * proton radius measurement

B o i « proton-induced antiprotons production cross sections
for dark matter searches

e pion induced Drell-Yan process
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The AMBER experiment @CERN

In 2019 the AMBER collaboration proposes to establish a “New QCD facility at the M2 beam line of the CERN SPS” (Lol:
http://arxiv.org/abs/1808.00848).
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* proton radius measurement
* proton-induced antiprotons production cross sections
for dark matter searches

e pion induced Drell-Yan process f — f;—,) (2 + AIS + QAA)

p+H ->p+X

p+He - p+X| p+D —=>p+X

v

Oct 2022 May-July May-July
1 week 2023 2024
Test run Physics Physics
APXS APXS APXS

p+He: beam @60, 80, 100, 160, 190, 250 GeV/c
p+H / p+D : beam @80,160,250 GeV/c
Minimum bias trigger: beam trigger with veto on non-scattered beam particle
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Beam @ AMBER

Located @EHN2 - fixed target layout
400 GeV/c primary proton beam from SPS impinges on

production target T6

secondary beam collected (hadrons, muons or electrons)

at 60-250 GeV/c

400 Gev Be

beam PID: two CEDAR (Cherenkov light based) detectors 1

0.8

utorpnt Kt Target
) = p-orpm K™
0.6

\\ 0.4

Beam composition

/
pnrt K ‘\ (Hadron absorber)

~100m | ~ 600 m ~ 330 m | ~100 m | 0.2

2023 rate ~25k particles/second
- 130k events / spill

| ..-."-‘-1-_:' ' -

: ----------------------- n‘* -
- . =
B : =
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B e a m @ A I\/l B E R Located ~ -40 m before target

lense/vapour-deposit mirror

Located @EHN2 - fixed target layout quartz windows gt ne

photomultipliers

400 GeV/c primary proton beam from SPS impinges on
production target T6

pressure vessel

secondary beam collected (hadrons, muons or electrons) o
at 60-250 GeV/c '

beam PID: two CEDAR (Cherenkov light based)|detectors

alignment table

thermal insulation passive voltage divider

\ quartz window diaphragm light path lense vessel
400 Gev Be \ o
p beam p * K (Hadron absorber)
s et s ettt o o ...A_>...
from SPS pr K™ \
| =100m | ~ 600 m ~ 330 m | ~ 100 m

condenser corrector helium vapour-deposit mirror
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Beam @ AMBER

* Located @EHN2 - fixed target layout

* 400 GeV/c primary proton beam from SPS impinges on production
T6 4

quartz window diaphragm light path

1 condenser corrector helium vapour-deposit mirror
13/03/2025 [N




Beam @ AMBER

AMBER preliminary Beam @190 GeV/c

Expected fraction of protons in the beam is ~75%

oo

Proton signal well separated from pions and kaons

By selecting the top right region (PMT multiplicities
>=6 in CEDAR1 and CEDAR2) we get ~73 %

CEDAR2 PMT hits
o N

Resulting tagging efficiency of ~96% @190 GeV/c

Cherenkov ring

PMT

8

0 1 2 3 4 5 6 7
CEDAR1 PMT hits
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The AMBER experiment @CERN — layout in 2023
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| | | |
| | | | >
Om ~3.5m ~18.5m ~46 m
Large Angle Spectrometer (LAS) Small Angle Spectrometer (SAS)
* Mainly small+medium size trackers *  Mainly medium+large area tracker
e SM1 e SM2
e RICH * Muon filter
 Muon filter e ECAL
e ECAL
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The AMBER experiment @CERN — layout in 2023
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Large Angle Spectrometer (LAS)
* Mainly small+medium size trackers

e SM1
* RICH
* Muon filter
* ECAL

13/03/2025

Small Angle Spectrometer (SAS)
*  Mainly medium+large area tracker

e SM2
* Muon filter
e ECAL
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The AMBER experiment @CERN — layout in 2023
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Large Angle Spectrometer (LAS)

* Mainly small+medium size trackers
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RICH
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Small Angle Spectrometer (SAS)

*  Mainly medium+large area tracker
SM2

Muon filter

ECAL
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Analysis outline

do

(p + He - p+ X)

dpdpr




Analysis outline

do
dpdpr

(p + He - p+ X)

e > 200 tracking planes
to align
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Analysis outline

- 5 + X)
_)
dpdpy , P

target

e > 200 tracking planes e Data quality (spills and
to align runs rejection)

e Luminosity
e Lifetime DAQ+VETO
e Target position
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Analysis outline

0 +, 54 X)
md?
dpdpr ? |

PID target PID

PID

e > 200 tracking planes e Data quality (spills and ® RICH characterization
to align runs rejection) e CEDAR PID

Luminosity efficiency/purity
Lifetime DAQ+VETO
Target position
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Analysis outline

90 o+ H8 >F+ X)
p+He -
dpdpr = i

PID target PID
Analysis of the PID Monte Carlo Extraction of the
data hadrons spectra
e > 200 tracking planes e Data quality (spills and e RICH characterization e Tune event generator e Event and tracks
to align runs rejection) e CEDAR PID e Detector efficiencies selection
e Luminosity efficiency/purity e Acceptance e Corrections:
e Lifetime DAQ+VETO corrections e Acceptance
e Target position * Bins size optimization e Re-interaction

e RICH
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Reconstructed interaction vertices in the target region

5 g

AMBER preliminary p —He @/syy = 189 GeV1

=
o Target region 1 beam
107

r ': o | .;__—-i 10°

AR ! b bl TR
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AMBER preliminary
S o [ '

3 107

2

S5 102
g 10°
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e e e il B Position and dimension of the target were extracted with a
' Ziforh] dedicated study using the primary vertices distributions.
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RICH-1: final state hadrons PID

The PID method relies on an extended maximum likelihood
approach, based on the parametrization of the expected
Cherenkov angle and the position of collected photons

AMBER preliminary p — He @+/syy = 18.9 GeV
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55
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107
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10°

20

10 20 30 40 50 60 70
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6 oy [mrad]

Ly =exp|— (Su + B)] H S (05, ¢5)
fa(8. ) = su(0,¢) + (0, ¢)

S, =/3m(61fp)d6‘dgo

B= [ b0, ) dodyo

So 1(6; — O)°

SM (Bj, QDj) = m exp
J

2
2 Ty;

AMBER preliminary

p — He @+/syy = 18.9 GeV

ep (0, ;)

60 ! 1
55
50
107
45
40
35 Momentum thresholds 10
1 m 2.5GeV/c
30 - | K 9GeV/c
L 18 GeV/c
25 P / |
20 et R E T R B O N R \
10 20 30 40 50 60 70 80
p [GeV/c]
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RICH-1: final state hadrons PID

RICH PID matrix estimated from real data VOs decays e(r =) e =7 elp—m)

Hadrons Decays
S - M (9, 0) e(m— K) e(K = K) €p— K)
Ks e (69.20 £ 0.05)% e(mr—p) eK—=p) €ep—p)
2 KTK™  (48.94£05)% e(r—=X) e(K = X) elp— X
AAN)  pr (prt)  (63.9+£0.5)% ( ) ( ) (p )
imi — He @/ = 18.9 GeV
AMBER preliminary P~ He @sun ¢ AMBER preliminary p —He @y/syy = 18.9 GeV
T 020 PR 10 5 0.30 1
g 018i a:p—l — By 0.9 % -
S L PP S ol
Q - o 025—
016 P = pcost 08 N
014 pr = psinf e 020 -
0.12— N
- 0.6 -
0.10— 0.15—
B 05 B
0.08— K
= 04 0.10— 102
0.06— n
= 03 C
004 0.05
0.02— 02 -
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Relative statistical error [%)]

Relative statistical error on antiproton spectra
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A preliminary unfolding shows that we
collected ~6million antiprotons in

* p[10, 60] GeV/c

* p;[0, 2] GeV/c

Statistical errors in most bins < 1%

Leading systematic errors expected
from:

* Luminosity

* RICH unfolding




Antiproton production from decays

f=1r2+Ag+2A))

do ij
dT

g (1s) = / dT; 4w nism; @i (13)
Tin

(T3, T)




Antiproton production from decays

https://doi.org/10.1016/50927-6505(01)00107-4
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https://doi.org/10.1016/S0927-6505(01)00107-4

E, [GeV]
102 10° 10 10° 106 107

0.8

0.6
I

I< 0.4}

0.2

00 |||||‘ 1

10 102 10

\E [GeV]

DAVIDE GIORDANO @DPG-FRUHJAHRSTAGUNG 2025

10*

- @ e e

-l 8- 8-

BHM

NAL
MIRABELLE
NA49

30-in

ISR

STAR
ALICE

CMS



Antiproton production from decays

Ajs

https://doi.org/10.1016/50927-6505(01)00107-4

E, [GeV]
10! 10° 108 104 10° 10° 107 108
'|T|'| 1 IIIIIII| 1 IIIII| I IIIIIII| 1 IIIIIII| 1 IIIIIII| | IIIIIII| I IIIIIII|
0.6}
0.4}
0.2
ook | e I ........... I T
I | I 'I'I v 'I' |
10! 102 103 10*

13/03/2025

NA49 pC
Naay np
Fermilab

STAR

=i o= o= ko= =0

ALICE

dN/dx

L 025

0.2

0.15

0.1

0.05

doi:10.1556/APH.17.2003.2-4.20

158 GeV/c

1.

mN+p —>p X
® p+p >p X

n Only existing
data on the
isospin
symmetry
violation!

,

L

0
-0.2

DAVIDE GIORDANO @DPG-FRUHJAHRSTAGUNG 2025

-0 0 01 02 03 04

X
F

{ABELLE
9

in

\R
CE

15




Expected impact from 2024 data

(publication in preparation)

0.6 ‘
----- Winkler Fit 68% CI
ost 1 = Winkler Fit MPV
b ¢ Available experimental data
. I ¢ AMBER projected (data taken) |
0.4
In 2024 data collected with 2 targets \ 4 LHCb projected (data taken)
1. liquid Hydrogen Losl % LHCb projected (planned)
2. liquid deuterium < N
. 02 N [
With beam momenta @80,160,250
GeV/c 0.1} %}{ L
(0700 ) "ESP - L e +ﬁ_5:_: :.:..‘..:.:.:_:_:_:_z_':_i‘-.'-'_ii‘l‘_ ----------- ,[ nn
1ot 102 103

Vs (GeV)

The data collected at the same energy with the different targets let us calculate the production rates in p-p
and p-D that may confirm or not the presence of an isospin asymmetry.

In both cases, the error will be reduced and directly impact the antiproton production parametrization at
low energies.
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The dark matter indirect detection reached a “precision” era thanks to very

PARTICLE PHYSICISTS

precise data by experiments and more precise models in the propagation and

ASTRONOMERS

creation of cosmic rays

A leading uncertainty comes from the scarcity of data in the relevant reaction channels (pp and pHe) at the cosmic “scale”

AMBER collected data on p-He in 2023 and p-H / p-D in 2024. These dataset are expected to give a significant impact in the

antiproton production modeling

Preliminary results on 2023 p-He data are presented here. They show very good performance of the spectrometer and a very good
coverage of the phase space with small statistical uncertainty between 10-60 GeV/c in momentum and 0-2 GeV/c in transverse

momentum.

Analysis ongoing!
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BACKUP
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Dark Matter detection - direct

Direct interaction with SM particles
Any positive signal would give unambiguous confirmation of particle

nature
Typical experiments:
* Underground, low-background lab
» Target with large mass = defines the limit of detection in a

certain time
e Excitation of nuclei and scintillation signals

dR poM > do Ey  4mymx )
= vf(v dv xexp | — < (E.
dEnr mwmy Jo, . f( )dEnr P ( EU (mx + mN)2 ( )

min

Direct detection

Divided in categories according target material:
* Cryogenic

* Liquid noble gases

* Scintillating crystals

* Bubble chambers

e Directional detector

DAVIDE GIORDANO @DPG-FRUHJAHRSTAGUNG 2025
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How to add DM into CR flux interpretation

A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, Cirelli et al. . . .
2. Choose the injection source term

Angle fi the GC [d ] i
ngle from the GC [degrees (don’t forget the “standard” astro-production)

10" 30”17 57107 3071927 5°1020°45°

104 é Moore % 1 p 2 de
g _ - ann o _ b
S 10 fo BTN d 2 (MDM> fm‘] Jinj” = Z<Jv>f db
g 0. > !
= E Iso 7
a 1E
= y Epo Burkert f

il : g = P fdec dec E :Fdeﬁ

10—25‘””“ N i i . Hum({} L 4 —_— - . . M * _—

1073 1072 107! 1 10 10? M an hJ dE
r [kpe] DM f
-2
r r rs [kpe]  ps [GeV/em? ... and decay methods
pxrw(r) = i (1 N T_) [kpe] ps | 1 y
’ 24.42 0.184 €Lers €xCrs HLML> Hilps TLTL: TRTR:
Hadronization = need input from qq, ct, bb, tt, v, gg,
generator (HERWIG, PYTHIA,..) WiWr, WiWe, ZuZn. ZrZr,
+ 3 <
Numerical solution of propagation hh.
equation (DRAGON, GALPROP,...) Vele, VyDyy Vrly,

VV = de, VV = 4p, VV — 47,
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The 2023 p-He data sample

2 months of data taking

Collected beam momenta @60, 80, 100, 160, 190, 250 GeV/c

Minimum bias trigger: beam trigger with veto on non-scattered beam particle

Beam mom. | Collision energy | Start Date | End Date || Number of
|GeV/c | Vann | GeV | spills
60 10.7 24.05 30.05 37000
80 12.3 17.06 25.06 13400
100 13.8 01.06 11.06 13700
160 17.3 14.06 17.06 8500

250

13/03/2025
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Beam composition
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The AMBER experiment @CERN —trigger in 2023

Trigger system:

* Beam trigger (BT) = tags entering beam
particles

* Beam killers (BKs) = tags non-interacting
beam particles

 VETO - remove unwanted beam tracks (halo +

divergent)
VETO *
ih TARGET I @ BK2 i . .. . . .
] == BKI Position of beam killer optimized with simulation
CEDARL  CEDAR BT and intensity scan = changes with different
magnets configuration
SM1 RICH-1 SM2
—{ ———— | | | - o L
-30m -4m 0m 3.50m 9m 18 m 25m 33m : 2: ;ﬁ%
QE o : e
ﬂ; gv ‘ Trend Ruler Values
£ < | Ruter \
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The AMBER experiment @CERN —trigger in 2023

CEDARI

13/03/2025

BK2

33m
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Trigger system:

* Bea M
part
* Beal ing
bea
 VET s (halo +

Positio

Ruler
Date 2023/05/25

- Time 02:26:44 (908)
(BK1_and_BK2)/BT 0.28
BK1_y mm [mm] 3.00
BKL/BT 0.42




RICH-1: final state hadrons PID

Ly =exp[—(Su + B)] H far (05, 95) Sm = /sm(t?, )d dp

j=1
The PID method relies on an extended maximum likelihood Far(6,0) = s11(8, ) + b(B, 0) B = [ b0,¢) dodg
approach, based on the parametrization of the expected < 1(6: — 0,)?
e 0. 0) = ——0 _ -\ M) 0. o
Cherenkov angle and the position of collected photons su (05, ;) oo/zs P l S ] ep (05, ¢5)
AMBER preliminary p — He @+/syy = 18.9 GeV
=5 60 s 1
EI 55 3 momentum intervals:
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