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50 years of charmonium .......
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Understanding hadrons

this is a hadron (obviously)

proton we can use it to study the strong interaction

Silhouettes from https://www.phylopic.org/



Understanding hadrons

one way Is to study hadron structure
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Understanding hadrons
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Understanding hadrons

/A-baryon

there are many, many (...) different hadrons

— hadron spectroscopy
variety & patterns also teach us about the strong interaction



Understanding hadrons

A brief guide to exotic hadrons
arXiv:2410.06923 [hep-ph]

/A-baryon

experimentally & theoretically challenging

matching expectation & reality will tell us a
lot about how well we understand hadrons!
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. any hadron that is not a gg

Y-meson

Exotic hadrons

|

meson or ggqg baryon




Why quarkonium?




Quarkonium

quarkonium: QO-meson (where O = c, b)

strong interaction version of positronium (or the hydrogen atom) o

S -2
charmonium W
S~
q -4
we can calculate the spectrum using similar methods ]
Godfrey & Isgur, PRD 32 (1985) 189-231 -6
Barnes, Godfrey, Swanson, PRD 72 (2005) 054026
Godfrey & Moates, PRD 92 (2015) 054034
-8

spin-spin interaction

Positronium

from Povh, Rith, Scholz, Zetsche, Rodejohann, Teilchen und Kerne
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Charmonium
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Vector charmonium

1 (4415)

1 (4360)

this decay
should dominate

(Zweig rule)
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Vector charmonium

1 (4415)

1 (4360)

this decay
should dominate

(Zweig rule)
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Vector charmonium

S. Ting with the J particle
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Vector charmonium
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How about vector bottomonium?
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Vector bottomonium

<

Y (11020)
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’ this decay
should dominate
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Vector bottomonium
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Vector bottomonium
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Vector bottomonium
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Vector bottomonium T ]
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inclusive data from Belle & BaBar 7
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How to improve: coupled channel analysis




Coupled channel analysis

from the experiment, we have an almost complete picture of bottom hadron production in e~ annihilation

(*)
B(S)

‘idea: use all the data to learn more about the
ﬂ Intermediate vector bottomonium resonances |
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Coupled channel analysis

the most simple model we could think of: M = b + BW(s)

resonance

— contact interaction
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Coupled channel analysis

unfortunately, that is insufficient:

we could have an intermediate pair of hadrons.j]T
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Coupled channel analysis

o

produce intermediate pair jj

rescattering to the final state jf — ff



Coupled channel analysis
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~ BY
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Coupled channel analysis

O mmmm——
free parameters: |

| strength of non-resonant couplings b; |

(bare) masses of resonances 71,

strength of resonant couplings gr.;

\ Q('+ """" )/

produce intermediate pair jj 38 rescattering to the final state jj — ff



Coupled channel analysis
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Coupled channel analysis
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‘resonance:

pole of matrix element

M(s) at \/E =m-—1 h

PRD 106 (2022) 9, 094013
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What do we learn?

* for the first time, decay branching fractions are determined

— sensitive input for interpretation

ﬁ VErsus
(

* We can improve upon old measurements

— accounting for non-resonant processes |

IS Iimportant!

* we can provide some guidance for future

measurements

I | 1 I 1 | 1

PRL 54 (1985) 381

11

Fe+e— X Apeak 1‘

11

CENTER OF MASS ENERGY (GeV)

— 80% of Y(11020) peak intensity has not been measured yet!
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Charmonium:
A piece of the puzzle




The case of G(3900)
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The case of G(3900)
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Eichten et al.,

Phys. Rev. D 21 (1980) 203
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j In our calculatlon there is some weak structure
| in the 3.9-4.0 GeV region. It does not arise
from a cc resonance, but from the opening of the
DD* +D*D channel and a decrease in the DD chan-
nel due to a nearby zero in the 3S decay amplitude.
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The case of G(3900)
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— fit result
68% CL
90% CL

Data from:

BESIII (unoff.) Andy Julin, University of Minnesota
BESIIl: PRL 133 (2024) 8, 081901

BESIII: JHEP 05 (2022) 155

Belle: Phys.Rev.D 97 (2018) 1, 012002

CLEQ: Phys.Rev.D 80 (2009) 072001

BES: PRL 88, 101802 (2002)

BESII: PRL 97, 262001 (2006)

SPEAR: PRL 39, 526 (1977);

A. Osterheld et al. 86; Schindler 79




The case of G(3900)
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The case of G(3900)
- B T

* |

| & | spread between" diﬁe |
 —0.02 & v(3770) colours = systematio uncertainty |
~0.04 |
. - . | « we find no G(3900) pole!
S -0.06 w(4040) -
) 0.08 =  effects from the opening of other channels
g e matter when interpreting the data!
@ —0.1:—
—-0.12
= -
— —-0.14
-0.16
| —0-18:_...|....|....|....|....|....|..
3.8 3.85 39 3.95 4 4 05 ‘ (others disagree: Lin et al., PRL 133, 241903)
PRD 109 (2024) 11, 114010 Re(\(g)(V ‘
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How well do we know vector quarkonia?

* a lot of effort has gone into finding new exotic hadrons - but surprisingly little is known about regular vector quarkonia

E— e
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D

* we have the necessary data, but there is no free lunch: |
— this is no bump-hunt, simple interpretations tend to falil |

— coupled channel effects matter & global analyses are key - but hard!

o (nb)

* the future is bright: BESIII and Belle-Il keep producing high quality data
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* very active field with many different approaches - some examples: Linetal., PRL 133, 241903
Nakamura et al., arXiv:2312.17658 [hep-ph]
* many things still to be learned! Cleven et al., PRD 90 (2014) 7, 074039

do w(4160), y(4230), w(4360) all exist? L. von Detten, PRD 109 (2024) 11, 116002
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Thank you for
your attention!



