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« Basics and Motivation
Nuclear Physics: Fingerprints of Magic Numbers

Atomic Physics: Nuclear Properties in Optical Spectra
* Nuclear Charge Radii of Calcium Isotopes
36-52Ca: New lessons for theory and a tantalizing question

Magic moment after a 10-years quest: Laser spectroscopy of >3°4Ca

« The N=28 Isotones and the Charge Radius of °°Ni
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Fingerprints of (Doubly) Magic Nuclei
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Fingerprints of (Doubly) Magic Nuclei
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Nuclear Observables in the Optical Hyperfine Structure
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The Laser Nuclear Chart
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Measurement of 49-°2Ca using Collinear Laser
Spectroscopy and Bunched-Beam Detection
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Unexpected Strong Rise up to >°Ca O s
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The Fayans Functional

Ses74 TECHNISCHE
Sis—7#\ A
SHETP UNIVERSITAT

97 DARMSTADT

Ery = Exy(p) + Epy (p) + Exy (p. T) + ERY (p. D)

: 45F 9 2
ERsty = i | Fey + b + B2 (V)]
P gradient term in pairing density

satT - _
pairing density

Fayans et al., Nucl. Phys. A 676, 49 (2000)

P0 = Pu + Pps P1 = Pn — Pp o= L o = 0
Isoscalar isovector Psat Ppair
normalized densities
(Can this N\ o I

optimized o |

functional be = :;:: Ca chain N Sn chain 276 Pb cha:in

used in other §

parts of the G b4

Quclear chart ? /

16 18 20 22 24 26 28 30 32 60 65 70 75 80 115 120 125 130

neutron number

Reinhard et al., J. Phys. G 51, 105101 (2024)

C>LLAPS
Used Ca radii for optimization:

5<T3>40,48, 5 <[r(2:>44,48’ 5 <T2>52,48

C

IFayan‘s Fy(Ar) ——
0.5t Skyrme SV-min —6—
exp. —&—
04+
E
= 03
S
@v 0.2
T
< 0.1
@)
<V
N‘_‘ 0 -
-0.1
0.2 Reinhard & Nazarewicz, PRC 95, 064328 (2017) |
38 40 42 44 46 48 50 52

mass number A

C>LLAPS




Towards °4Ca
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The ROC Detection Principle
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The ROC Detection Principle

Reaction: Ca* + Na - Ca + Na* + AE
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ROC - Experimental Setup
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Charge exchange as a state detector
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Real setup
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Installed at the COLLAPS setup
at ISOLDE/CERN:

Two experimental campaigns:
2023 — 53Ca

2024 — >4Ca




Results: >2Ca as a Sensitivity Test
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The Magnetic Moment of >3Ca
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Scandium (Z=21) Results and the N=28 Isotones
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Summary

Laser spectroscopy is a ,universal tool” to study charge radii and nuclear moments

Charge radii changes are very sensitive to nuclear structure details and can herald
Indications for shell closures

The interplay between measurements and theory has lead to an improved understanding of
nuclear structure and a continuous development of theoretical tools

We have proven the ROC technique being sensitive at the 1 atom/s level and determined the
moments and charge radii of >3°4Ca

The microscopic origin of the kink and the odd-even staggering is still not fully understood.

Mi, 14:00 HK 25: Focus Session Il: Accurate Nuclear Charge Radii of Light Elements
K. KOnig:  First laser spectroscopic measurements of charge radii along the carbon isotope chain
F. Wauters: Precision radii of light elements using Metallic Magnetic Calorimeters
R. Roth: Precision Radii from the No-Core Shell Model via Neural Networks
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