Experiments for Explosive Nuclear Astrophysics

PJ Woods, University of Edinburgh, Goethe University of Frankfurt

"We stand on the verge of one of those exciting periods which occur in science from time to time. In the past few years, it has become abundantly clear that there is an urgent need for data on the properties and interactions of radioactive nuclei for use in nuclear astrophysics"

Willie Fowler, Nobel Laureate

Explosive H/He burning in Binary Stars

Isaac Newton, Principia Mathematica (1666): 'from this fresh supply of new fuel those old stars, acquiring new splendour, may pass for new stars'

The endpoint of the rp-process

The Hot CNO Cycles

Reaction rate often dominated by a few resonances in Gamow burning window

A NEW ESTIMATE OF THE ¹⁹Ne(p, γ)²⁰Na AND ¹⁵O(α , γ)¹⁹Ne REACTION RATES AT STELLAR ENERGIES

AND

J. GÖRRES Department of Physics, University of Pennsylvania, Philadelphia Received 1985 May 24; accepted 1985 August 19

¹⁵O(α,γ)¹⁹Ne reaction rate predicted to be dominated by a single resonance at a CoM energy of 504 keV

Key unknown - α -decay probability from excited state at 4.03 MeV in ¹⁹Ne compared to γ -decay, predicted to be ~ 10⁻⁴

The ¹⁵O(α,γ)¹⁹Ne reaction: the nuclear trigger of X-ray bursts

Reaction regulates flow between the hot CNO cycles and rp process
→ critical for explanation of amplitude and periodicity of bursts

Study of the ²⁰Ne(p,²H)¹⁹Ne transfer reaction on the ESR

Detector Pocket

•16x16 strips

Particle ID plot for DSSD

Excitation Energy Spectrum @ 72mm

Heavy Element Abundance: Solar System

from B.S.Meyer, Ann. Rev. Astron. Astrophys. 32 (1994) 153

Nucleosynthesis above Fe

Puzzle of the origin of heavy 'p-nuclei' – abundant proton-rich isotopes eg ⁹²Mo and ⁹⁶Ru

Predicted p-nuclei abundances compared to observed abundances

Arnould & Goriely Phys. Rep. 384,1 (2003)

Study of ⁹⁶Ru(p,γ)⁹⁷Nb reaction with decelerated beams using the ESR storage ring at GSI

Pioneering new technique on ESR (Heil, Reifarth) – heavy recoils detected with double-sided silicon strip detector (Edinburgh)

Position distribution of recoiling ions measured by DSSD

σ(p,γ)= 3.6(5) mb

New DSSD system being developed (Edinburgh/GSI/Frankfurt) for use in UHV allowing p-process reaction measurements in Gamow energy region on ESR (2014) and then CRYRING

TSR@ISOLDE – RIBs injected directly at low energy

Spokesperson: K Blaum (Heidelberg)

Deputies: PJW (Edinburgh), R Raabe(Leuven)

entire issue of EPJ 207 1-117 (2012)

ISOLDE site (west) side

 \rightarrow Proposal supported by CERN management

Abundances in novae ejecta

J. José, M. Hernanz, C. Iliadis. Nucl Phys A, 777, (2006), 550-578

Sensitivity to uncertainty in ${}^{30}P(p,\gamma){}^{31}S$ reaction rate

C. Iliadis, A. Champagne, J José et al., Astrophys. J. Suppl. Ser. 142, 105 (2002)

Presolar grains

- Grains of nova origin are thought to have a large ³⁰Si/²⁸Si ratio.
- Abundance of ³⁰Si is determined by the competition between the ³⁰P β⁺ decay and the ³⁰P(p,γ)³¹S reaction rate.

Novae Nucleosynthesis

Known ³¹S level scheme

D.G. Jenkins et al, Phys. Rev. C. 72. (2005)

week ending 29 JUNE 2012

Key Resonances in the ${}^{30}P(p, \gamma){}^{31}S$ Gateway Reaction for the Production of Heavy Elements in ONe Novae

D. T. Doherty,¹ G. Lotay,¹ P. J. Woods,¹ D. Seweryniak,² M. P. Carpenter,² C. J. Chiara,^{2,3} H. M. David,¹ R. V. F. Janssens,² L. Trache,⁴ and S. Zhu²

⁴He + ²⁸Si \rightarrow ³¹S + n fusion reaction

Identification of levels in Mirror Nuclei

$^{30}P(p,\gamma)^{31}S$ reaction rate using new resonance data

Galactic abundance distribution of the cosmic γ-ray emitter ²⁶Al

INTEGRAL Measured abundance 2.8(8) Solar Masses [R. Diehl, Nature **439**, 45(2006)]

Supernova Cycle

Life Cycle of a Red Supergiant Supernova Massive Star Ne bula Black Hole Ne ut ro n Recycling Star

Hydrogen burning in Mg – Al Cycle

Identification of Key Astrophysical Resonances Relevant for the ${}^{26g}Al(p, \gamma){}^{27}Si$ Reaction in Wolf-Rayet Stars, AGB stars, and Classical Novae

G. Lotay,¹ P. J. Woods,¹ D. Seweryniak,² M. P. Carpenter,² R. V. F. Janssens,² and S. Zhu²

ISAC at TRIUMF

→ Problem is that most reactions on key low energy resonances cannot be measured directly

- \rightarrow Use transfer reactions to determine Γ_p for (p, γ) reactions
- → New high resolution study performed of the d(^{26g}Al,p)²⁷Al analogue reaction using the Edinburgh group's TUDA silicon strip detector array on the ISAC II facility at Triumf (June 2012)

NB exotic reaction since ${}^{26g}AI$ has $J^{\pi} = 5^+!$

New technique for (d,n) studies of (p,γ) resonance strengths with GRETINA gamma-array and S800 spectrometer PJW, H Schatz et al, NSCL, April 2013

Measure $\sigma(d,n)_{int} \rightarrow \Gamma_p$ for

each key resonance

~10⁶ ²⁶Al 30 MeV/u ions on CD₂ target

Conclusion

We are in a very exciting era coupling the properties and reactions of exotic nuclei with explosive nuclear astrophysics

Need a variety of facilities, and new techniques and equipment, to address the most interesting scientific issues