
QCD at FAIR workshop 2025

Physics perspectives with hadron beams for the next decade

22.-27. June 2025, Sicily, Italy

AMBER: A QCD Facility at CERN

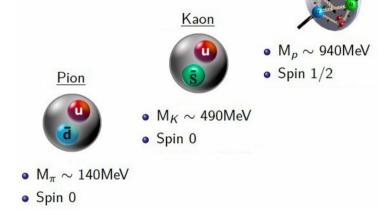
Stefan Diehl

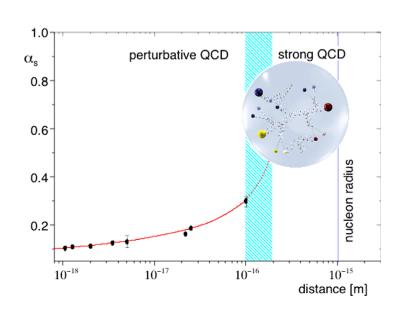
for the AMBER collaboration

Justus Liebig University Giessen
University of Connecticut
06/24/2025

QCD Questions in the Context of AMBER

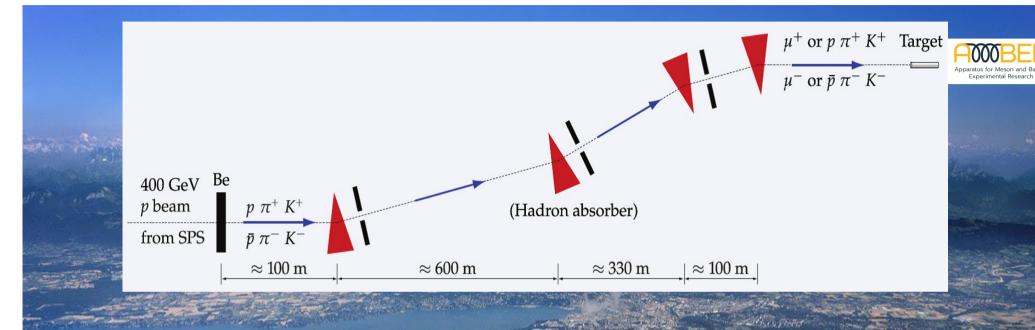
Understand hadron properties in terms of quarks and gluons

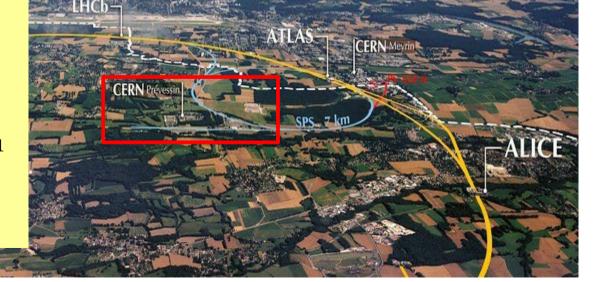

- Emergence of hadronic and nuclear degrees of freedom
- Confinement
- Masses: nucleon masses vs meson masses


Experiment: Scattering and Spectroscopy

- Quark and gluon PDFs of pion, kaon, proton
- Excitation spectrum of hadrons
- Form factors, hadron radii
- Input to SM tests at colliders, beyond SM searches

Quantitative theoretical approaches:

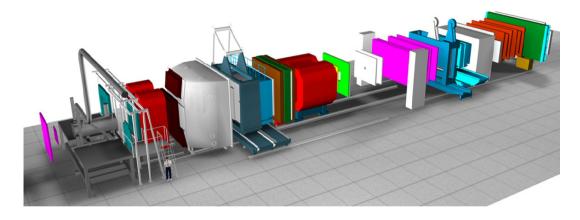

- Effective field theories
- Lattice QCD
- Continuum methods


Proton

AMBER @ CERN: The M2 Beamline of the SPS

M2 beamline (EHN2):

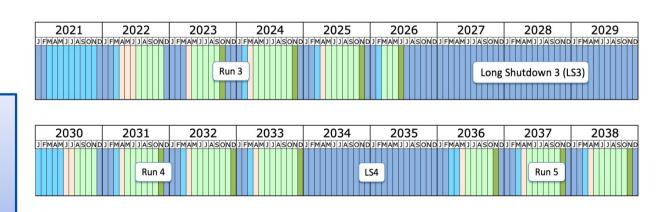
- Most versatile beamline at CERN
- High-intensity beams of μ^{\pm} , π^{\pm} , K^{\pm} , p[±]
- $-\mu^{\pm}$: 90 180 GeV, up to 5 · 10⁷ s⁻¹
- $-\hbar^{\pm}$: 60 250 GeV, up to 1.5 · 10⁷ s⁻¹ up to 10^9 s⁻¹ without absorber
- Intensity limited by radioprotection



AMBER @ CERN SPS

AMBER was approved as NA66 experiment in December 2020

- The Collaboration consists of ~200 physicists from 34 institutes
 - → Many new groups
- AMBER inherited, extended and upgraded the 2-stage spectrometer of the COMPASS collaboration


Muon and hadron beams 60 – 250 GeV at the M2 beamline at SPS

Phase-1: 2023 \rightarrow 2031

• Conventional h/μ beams

Phase-2: 2031 \to 2041

- High-intensity hadron beams (K, p)
- Proposal in drafting stage to be submitted in 2025

AMBER Physics Program

Phase 1: 2023 - 2031 (conventional beams)

- **p** production cross sections for dark matter searches (pbarX)
- Proton radius: High-energy µ-p elastic scattering (PRM)
- Pion PDFs: Drell-Yan processes (DY)

Phase 2: 2031 - 2041 (high intensity and high purity kaon beam)

The AMBER experimental setup

target region:

program-specific

spectrometer: common for all measurements

Phase 1:

pbarX: 60 – 250 GeV p

• **PRM**: 100 GeV μ^{\pm}

DY: 190 GeV π[±]
 + upgrade of CEDARs
 for beam PID

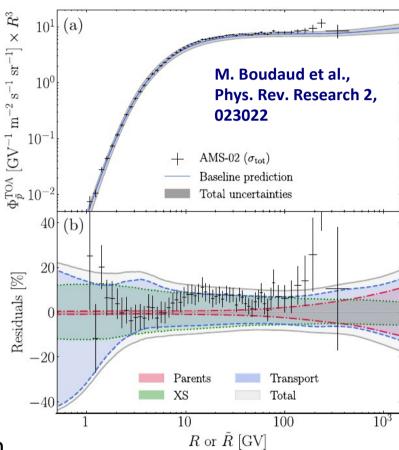
• pbarX: IHe/IH/ID target

PRM: H₂ TPC + Si pixel + fiber

DY: C, W target + absorber+ vertex detector

- New free running DAQ
- Upgrades of several detector systems: fiber hodo, ECAL
- New large-area GEM detectors

Phase 2:


- Beam line upgrade for high-intensity / high-purity K beam
- Further target and detector upgrades (ECALO, final state PID)

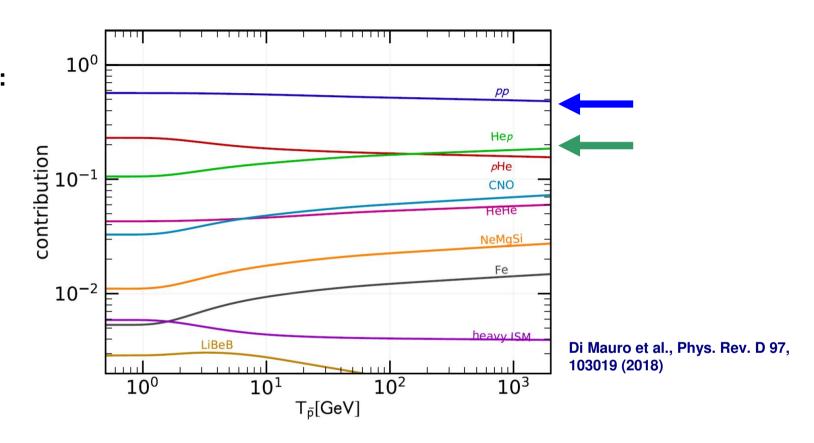
Antiproton Production Cross-Sections for Dark Matter Search

J. Heisig, MIAPP 2022

W^{\pm}, t, b, \dots p, He, C, O, ...

Flux vs Rigidity

AMS-02 (alpha magnet spectrometer):

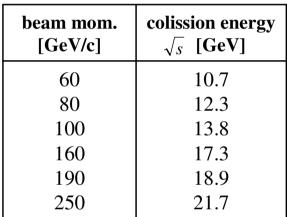

- Precise data on the cosmic antiparticle flux
- Sources: SM processes and dark matter annihilation

Limiting factor: p production cross section uncertainties from collisions involving p and He (currently 30-50%!)

Rigidity: Charged particle's resistance to deflection in a magnetic field

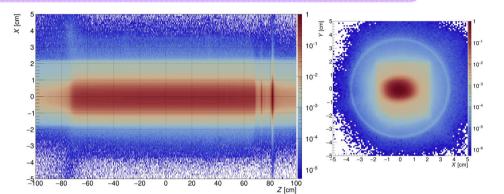
Antiproton Production in the Cosmic Radiation

Sources of antiprotons:

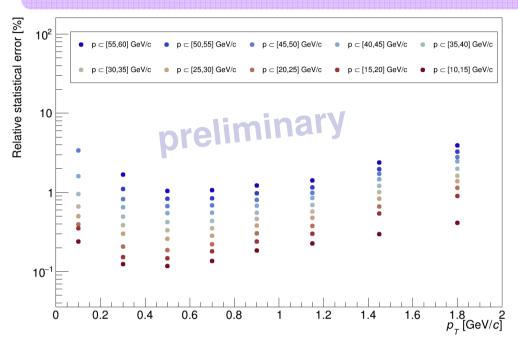

- 90% of the reactions involve p and He
- $p + p \rightarrow \overline{p} + X$ Some measurements (NA49, NA61) with low statistics
- $p + ^4He \rightarrow \overline{p} + X$ No data at relevant energies, only LHCb fixed target data at 4 TeV and 6.5 TeV

Antiproton Production Cross-Section Measurements by AMBER

2023:
$$p + {}^{4}He \rightarrow \overline{p} + X$$

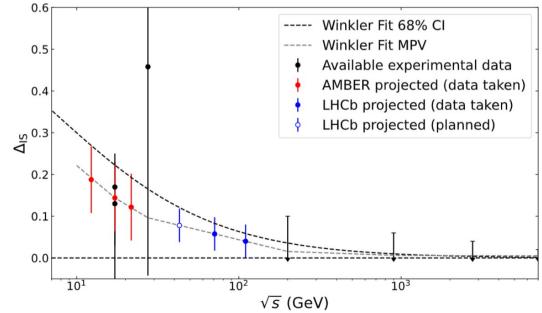

- Rate ~ 25k Events/s
- 6 collision energies:

beam mom. [GeV/c]	colission energy \sqrt{s} [GeV]
60	10.7
80	12.3
100	13.8
160	17.3
190	18.9
250	21.7

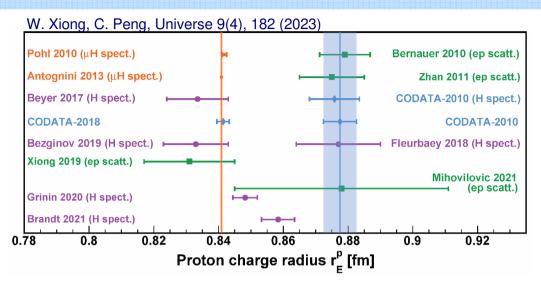

2024:
$$p + H \rightarrow \overline{p} + X$$
, $p + D \rightarrow \overline{p} + X$

- Extract possible difference in \overline{p} production on p and n
- Access difference in \overline{p} and \overline{n} production using crossed reactions $p + p \rightarrow \overline{p} + X$, $p + n \rightarrow \overline{p} + X$
- 3 different beam momenta: 80, 160, 250 GeV/c

Dark Matter Search: Projected Uncertainties



Winkler, JCAP02, 048 (2017)


Antiproton production cross-section uncertainties extracted from the already taken AMBER data

Isospin factor:

Enhancement of antineutron over antiproton production

Proton Charge Radius Measurement

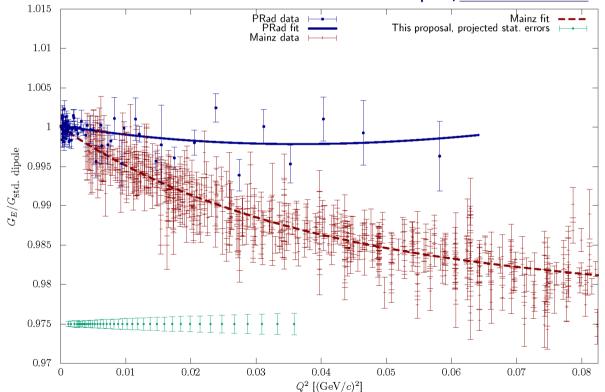
Proton radius world data from CODATA since 2010

- muonic spectroscopy
- hydrogen spectroscopy
- electron scattering

Unique measurement with AMBER:

Elastic scattering of high-energy μ^{\pm} (100 GeV/c) on protons

- \triangleright Goal: 70 million elastic scattering events in the $10^{-3} < Q^2 < 4 \cdot 10^{-2}$ GeV² range
- ightharpoonup Precision on the proton radius le 0.01~fm


Why μp scattering?

- Different leptonic probe
- Different systematic uncertainties
- Much smaller radiative corrections than ep
- Provide precise data for global fit
- Test of the lepton universality

Proton Charge Radius

$$\left(\frac{d\sigma}{d\Omega}\right)_{LAB} = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \left(\frac{E'}{E}\right) \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} (\cos^2 \frac{\theta}{2}) + 2\tau G_M^2 \sin^2 \frac{\theta}{2}\right]$$

AMBER Proposal, <u>CERN-SPSC-2019-022</u>

$$e p \rightarrow e' p'$$

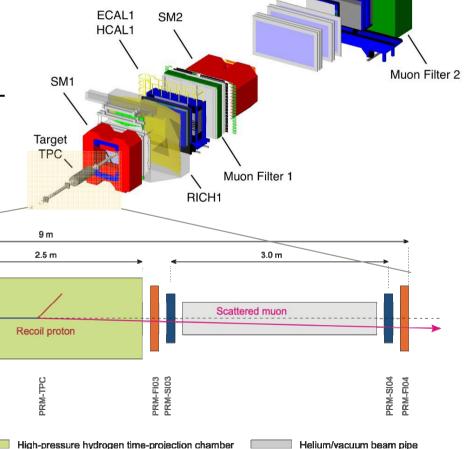
$$\left\langle r_{E}^{p\,2} \right\rangle = -\frac{6}{G_{E}^{p}(0)} \frac{dG_{E}^{p}(Q^{2})}{dQ^{2}} \bigg|_{Q^{2}=0}$$

Proton Charge Radius @ AMBER

 Measurement of the recoil proton energy in a high-pressure pure H₂ active target TPC: 500 keV – 20 MeV

3.0 m

Incident muon

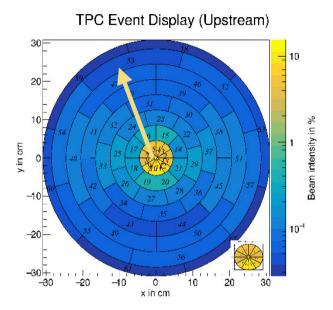

Scintillating-fiber tracker

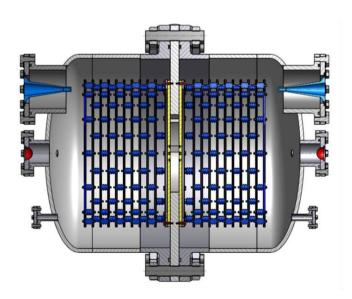
• Muon scattering angle measured by vertex detector: 0.3 – 3 mrad

 Muon momentum and PID measurement in the AMBER spectrometer

Radiative background measurement in ECAL

New continous streaming DAQ


ECAL2

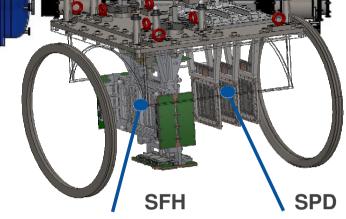

High-Pressure Time Projection Chamber

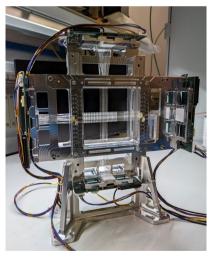
Direct measurement of recoil proton energy:

- 2 x 40 cm drift cells, filled with pure high-pressure H₂
 as target and detector gas
 - \rightarrow Drift time ~ 150 μ s
 - → Energy resolution < 6% required for desired precision
 - → Segmented readout plane for each cell
 - → Reconstruction of the proton track
 - → 2 different pressure settings: 4 bar, 20 bar to cover the Q² range

Muon Vertex Detection

High-precision tracking system:

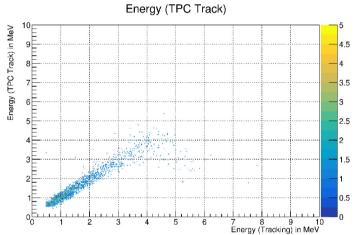

- 4 stations of MAPS (SPD) and a scintillating-fiber hodoscope (SFH), size ~ 9 × 9 cm²
- μ scattering angle ~ 20 μ rad

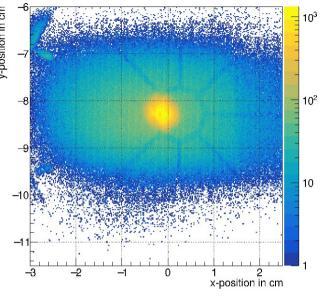


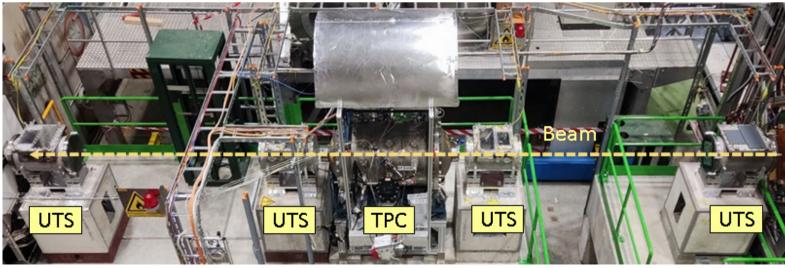
- 29 μm x 27 μm pixel size, ~8 μm spatial resolution
- Thickness 50 μm
- 3 planes (18 sensors each) per station
- ~ 2 μs time resolution

• 192 fibers per plane, with SiPM readout of individual fibers

Proton Radius: Status and Plans

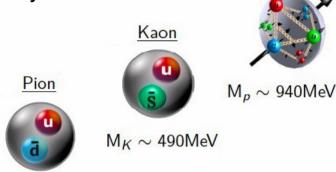

Prototype tests in 2021 and 2023


Assembly of new TPC and tracking detectors ongoing


Pilot run and first physics data with new TPC planned

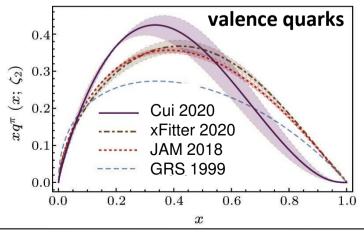

for 2025

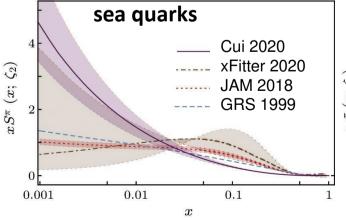
 Full physics run in 2026 (extension of run-3)

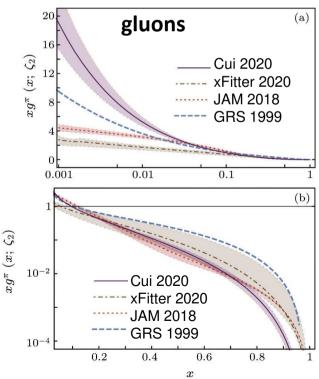


Proton

Chang et al., Chin. Phys. Lett. 38 (2021) 081101

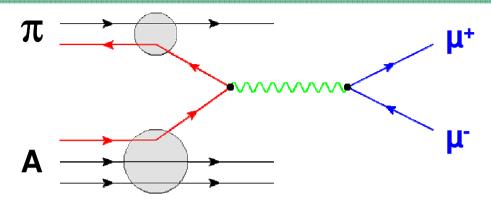

Pion Structure – Current Status


- The major part of the hadron mass is generated dynamically by QCD dynamics of the partons
- TMDs (PDFs) describe the 3D (1D) distribution of the partons in the momentum space
- A comparison of meson and nucleon TMDs (PDFs) can help us to better understand the generation of the hadron mass



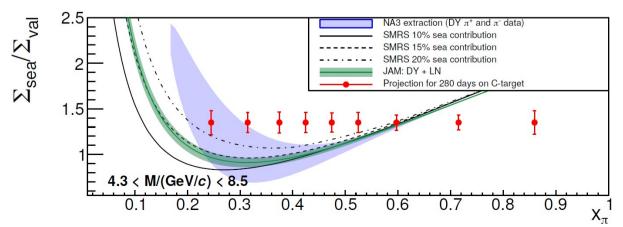
 $M_\pi \sim 140 \text{MeV}$

- So far, only scarce / old data for pion (kaon) TMDs and PDFs: E615, NA3, NA10,...
 - → Valence quark PDF poorly constrained
- → Sea quark and gluon PDFs basically unknown
- → Data mostly for heavy nuclear targets (large nuclear effects)



Stefan Diehl, JLU

Pion Valence and Sea Quark PDFs at AMBER



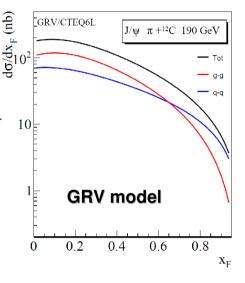
 $\sigma_{
m DY}^{\pi^+ A} \propto \sum_i (e_i)^2 \left[ar{q}_i^{\pi^+} q_i^A + q_i^{\pi^+} ar{q}_i^A
ight]$

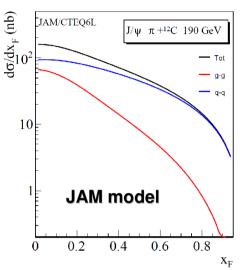
- Pion-induced Drell-Yan dimuon production
- Isoscalar ¹²C target ⇒ minimize nuclear effects
- π^+ and π^- beams \Rightarrow separate valence and sea $\Sigma_{
 m val} = \sigma^{\pi^-} \sigma^{\pi^+}$ only valence-valence $\Sigma_{
 m sea} = 4\sigma^{\pi^+} \sigma^{\pi^-}$ sea-valence / valence-sea

Goals for AMBER:

- 10× more data than currently available
- First precise and direct measurement of the sea quark distribution in the pion

AMBER Proposal, CERN-SPSC-2019-022




Pion Gluon PDFs at AMBER

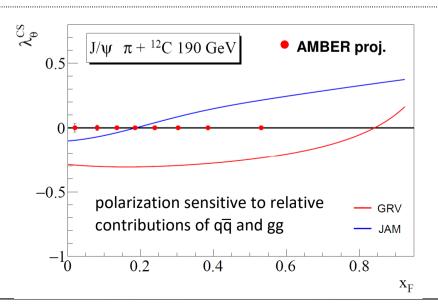
In parallel: Study of J/ψ production $\pi + A \rightarrow J/\psi + X$

- Measurement with π^+ and π^- beams
- At low $p_T < M(J/\psi)$: Dominated by $q\overline{q}$, $gg \to J/\psi$ 10 \Rightarrow Access to gluon PDF of pion
- Cross section 30-50 × larger than DY
 ⇒ Measure differential distributions

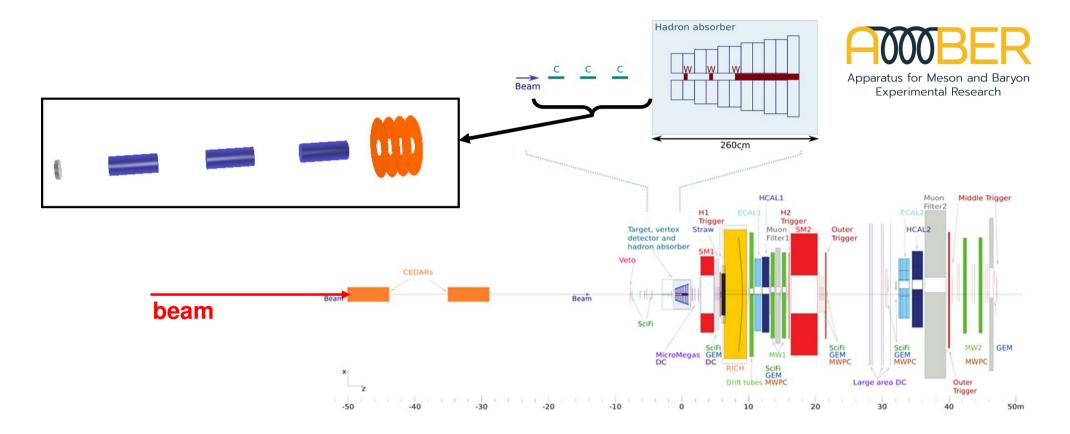
V. Cheung et al., PRD 98 (2018) 114029

But: J/ψ production mechanism not well known at low p_T

Additional observable: J/ψ polarization

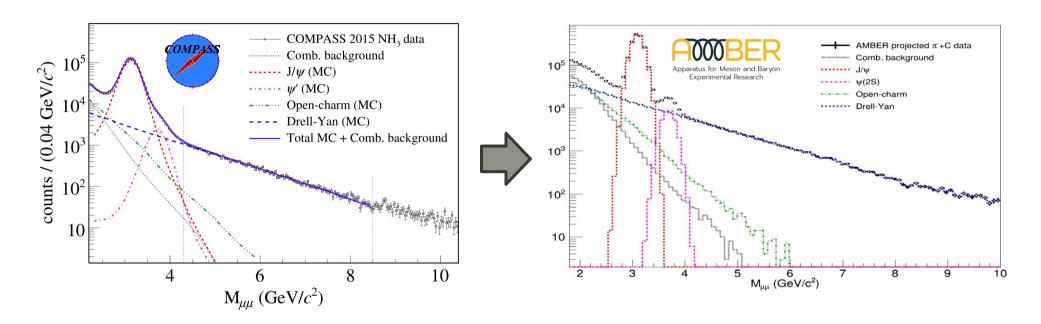

•
$$J^{PC} = 1$$
—, $J_z = -1$, 0 , $+1$

• Angular distribution $rac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta}\propto 1+\lambda\cos^2\theta$


$$-\lambda = +1 \Leftrightarrow J_z = \pm 1 \qquad q\bar{q} \to J/\psi$$

$$-\lambda = 0$$
 \Leftrightarrow unpolarized

$$-\lambda = -1 \Leftrightarrow J_z = 0 \qquad gg \to J/\psi$$


The Drell-Yan Experimental Setup at AMBER

DY program @ AMBER: $\pi^{\pm} + N \rightarrow \mu^{+}\mu^{-} + X$ (190 GeV π beam)

- 3 carbon targets + hadron absorber
- Add a silicon vertex detector after the last C target
- New beam telescope for backtracking to CEDARs

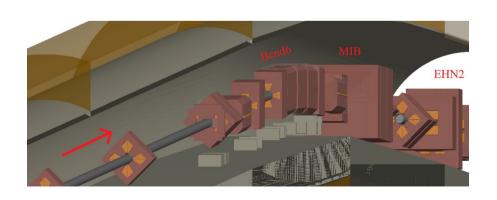
AMBER: A Vertex Detector for Drell-Yan Measurements

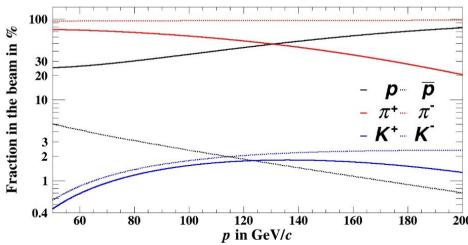
Advantages of the vertex tracker:

- Improves the mass resolution from ~200 MeV down to 100 150 MeV
- Improves the vertex resolution from ~12 cm down to < 3 cm
- Allows a lower mass cut for DY (4.3 GeV/ $c^2 \rightarrow 4.0 \text{ GeV/}c^2$)
- Suppresses the combinatorial background through tighter vertex cut
 - \rightarrow Enables clean access to ψ'
 - \rightarrow Might even allow us to access DY events below the J/ ψ mass

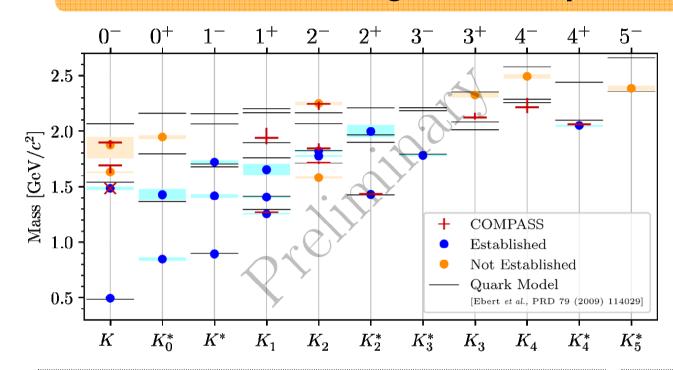
AMBER phase 2 physics program

Phase 1: 2023 - 2031 (conventional beams)


Phase 2: 2031 - 2041 (high intensity and high purity kaon beam)


- Kaon quark and gluon PDFs via DY, prompt photons
- Strange meson spectroscopy in diffractive production
- Meson charge radii
- Meson-photon reactions in Primakoff kinematics
- New ideas?

High Intensity Kaon Beams for Phase 2


Requirements:

- Highest possible intensity of Kaons in the secondary beam
 - ⇒ RF separation
 - ⇒ Optimized transport of the conventional mixed beam
- High-efficiency / high-purity beam particle identification
- Final-state PID at higher momenta (depending on beam momentum)
- Full solid-angle coverage for photons / electrons

Strange Meson Spectroscopy

- 25 kaon states listed by PDG (M < 3.1 GeV)
- 9 of those need confirmation
- Many predicted quark-model states still missing
- Most measurements performed more than 30 years ago

COMPASS:

- 11 strange mesons found → To be published soon
- Evidence for 3 excited K states
- Quark model only predicts 2: K(1460), K(1830)?
- K(1690) → Candidate for exotic strange meson
- Statistically and systematically limited:
 720k events, PID

AMBER phase 2:

- Beamline upgrade
- Improved beam K identification
- Improved final-state K ID
- Full solid-angle coverage for photons / electrons
- **Goal:** 20×10^6 exclusive $K^-\pi^-\pi^+$ events

Summary

- NA66/AMBER is a new and unique experiment at CERN dedicated to study fundamental questions related to the emergence of hadron properties from QCD
- Phase-1 started in 2023
 - → Antiproton-production cross sections for dark matter searches
 - → Proton radius with a high-intensity muon beam
 - → Pion PDFs in Drell-Yan processes
- Phase-2: Measurements with high-intensity hadron / Kaon beam
 - → Kaon and pion gluon PDFs, strange meson spectroscopy, meson charge radii, ...

