

"QCD at FAIR" Symposium 2025 - Opening & brief introduction

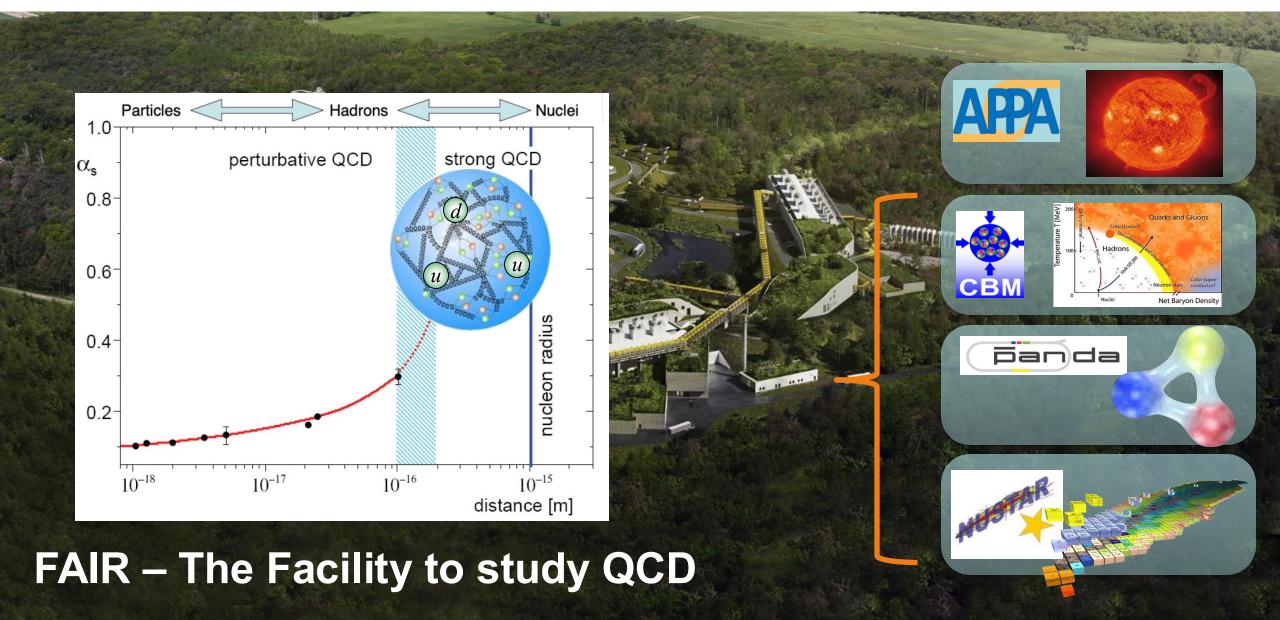
EMMI Collaboration Meeting: "QCD at FAIR" Workshop – Physics perspectives with hadron beams for the next decade ("First Science"+)

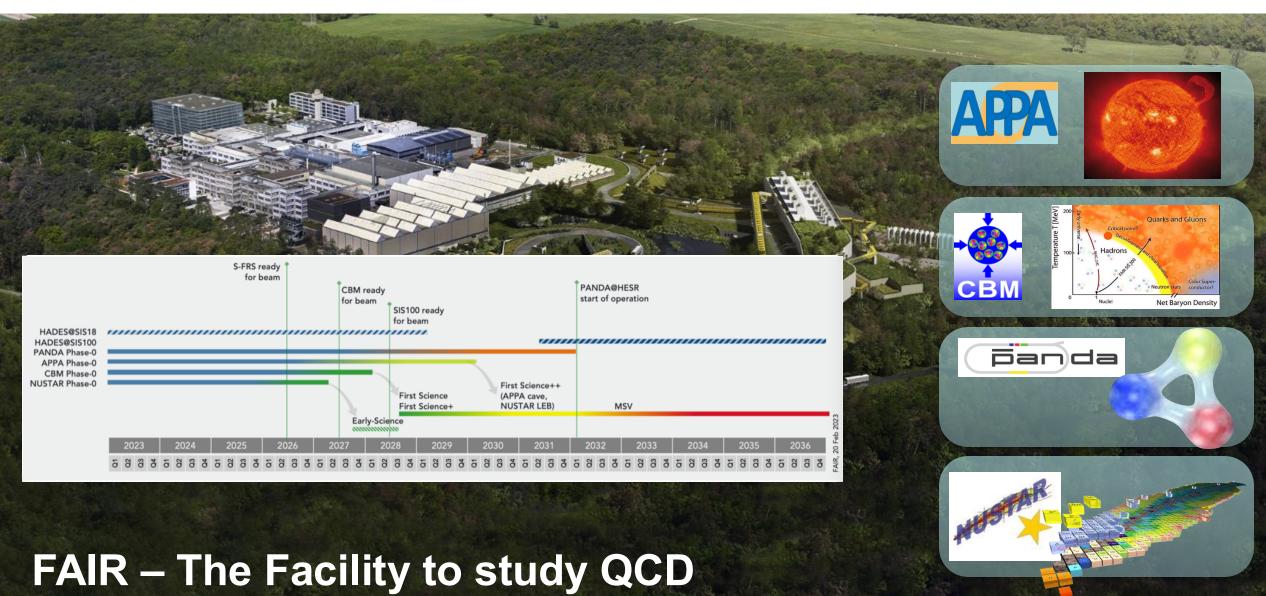
Frank Nerling, and
HFHF, GU Frankfurt & GSI Darmstadt
Johan Messchendorp
FFN, GSI Darmstadt

On behalf of the Organisation Committees:

J. Messchendorp, F. Nerling, J. Ritman A. Pilloni, I. Vidana, and B. Hadzimehmedovic

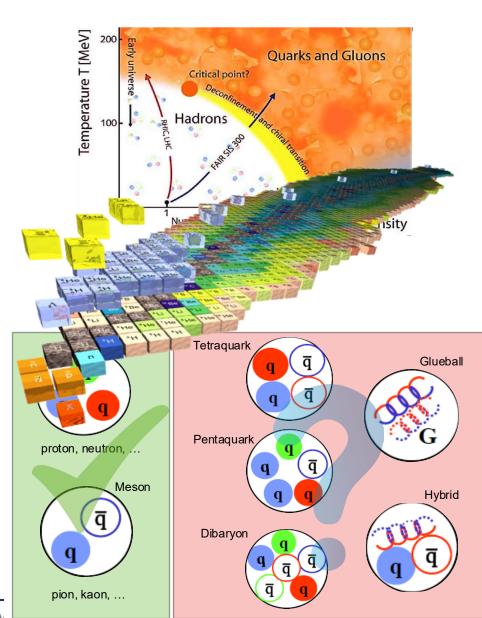
JOHANN WOLFGANG COETHE
UNIVERSITÄT





Methodologies at FAIR – QCD matter at extremes

Heavy-ion physics:


- Exploring dense QCD matter
- Probe strongly-interacting many-body systems
- Hadrons as probes of the medium
- Properties of hadrons in a dense environment

Nuclear physics:

- Map out the nuclear spectrum in isospin and strangeness
- Properties of nuclei at the edge of stability, e.g. neutron-rich
- Probe baryon/meson degrees-of-freedom in many-body systems

Hadron physics:

- Map out the hadron spectrum
- Search for "exotic" forms of hadrons
- "Microscopic" study of hadron-hadron interactions

Methodologies at FAIR – QCD matter at extremes

Heavy-ion physics:

- Exploring dense QCD matter
- Probe strongly-interacting many-body systems
- Hadrons as probes of the medium
- Properties of hadrons in a dense envi

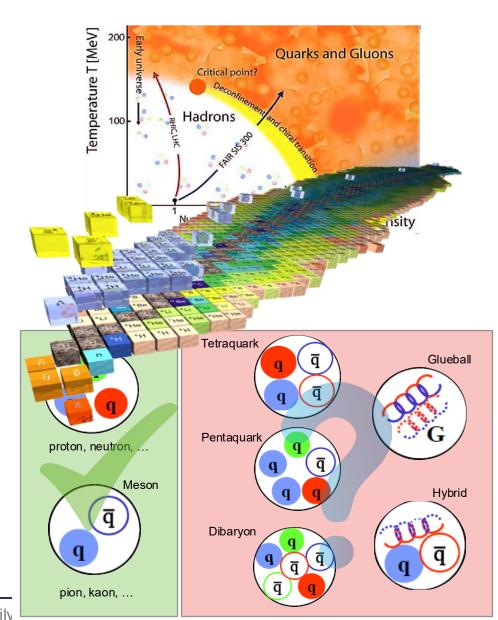
Hadron interactions:

Reference for understanding medium effects

Nuclear physics:

- Map out the nuclear spectrum in isospin and strangeness
- Properties of nuclei at the edge of stability, e.g. neutron-rich
- Probe baryon/meson degrees-of-freed

Hadron interactions:


Provide baryon-baryon data in flavour SU(3)

Hadron physics:

- Map out the hadron spectrum
- Search for "exotic" forms of hadrons
- "Microscopic" study of hadron-hadron

Hadron interactions:

Enable spectroscopy of (new) hadronic matter

Methodologies at FAIR – QCD matter at extremes

Heavy-ion physics:

- Exploring dense QCD matter
- Probe strongly-interacting many-body systems
- Hadrons as probes of the medium
- Properties of hadrons in a dense envi

Hadron interactions:

Reference for understanding medium effects

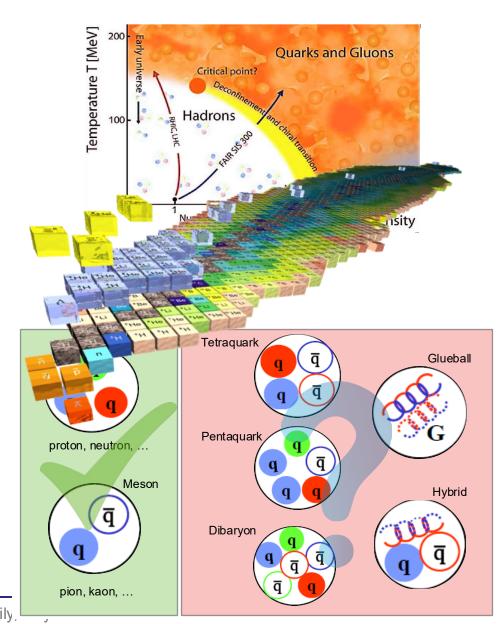
Nuclear physics:

 Map out the <u>nuclear</u> ... including interdisciplenary connections to astrophysics "The Universe in the Lab"

isospin and strangeness

of stability, e.g. neutron-rich f-freed

Hadron interactions:


Provide baryon-baryon data in flavour SU(3)

Hadron physics:

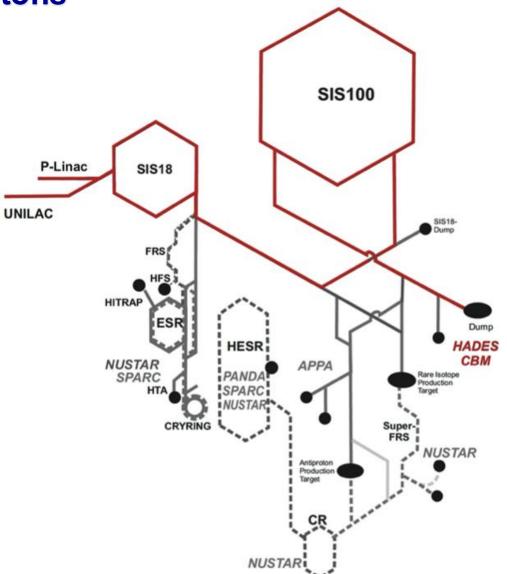
- Map out the hadron spectrum
- Search for "exotic" forms of hadrons
- "Microscopic" study of hadron-hadron

Hadron interactions:

Enable spectroscopy of (new) hadronic matter

From SIS18 to SIS100 – Hadron physics

with pions and protons


JOHANN WOLFGANG & GOETHE UNIVERSITÄT EDAMVEHIDT AM MAIN

Energy upgrade:

- From max 4.7 GeV (SIS18) to 29 GeV (SIS100) proton energy: $\sqrt{(s_{NN})} \approx 3.5$ GeV $\rightarrow 7.6$ GeV
- Opening new realm: double & triple strangeness and even charm baryons and mesons!
- Significant increase in production yield of hyperons

Intensity upgrade:

- From max protons/cycle of 10¹² (SIS18) to 2x10¹³ (SIS100)
- Even during "commissioning" (10¹⁰ protons/cycle) and 5 cm LH2 target: ~10 pb⁻¹ day⁻¹

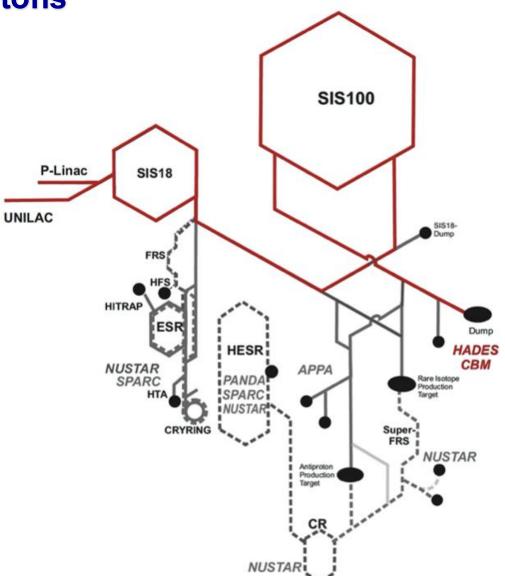
From SIS18 to SIS100 – Hadron physics

with pions and protons

Energy upgrade:

- From max 4.7 GeV (SIS18) to 29 GeV (SIS100) proton energy: $\sqrt{(s_{NN})} \approx 3.5$ GeV $\rightarrow 7.6$ GeV
- Opening new realm: double & triple strangeness and even charm baryons and mesons!
- Significant increase in production yield of hyperons

Intensity upgrade:

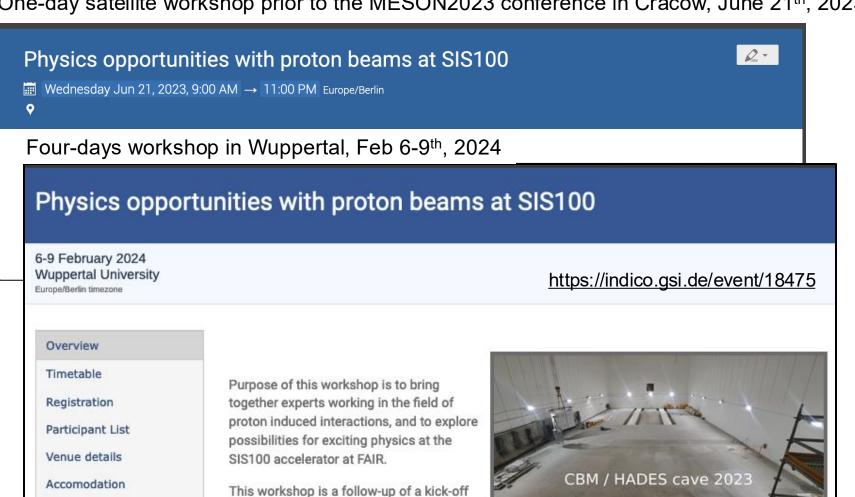

- From max protons/cycle of 10¹² (SIS18) to 2x10¹³ (SIS100)
- Even during "commissioning" (10¹⁰ protons/cycle) and 5 cm LH2 target: ~10 pb⁻¹ day⁻¹

Detector enrichment:

Towards high-rate capabilities and free-streaming DAQ's etc.

Theory enrichment:

Terra incognita: intellectual challenges in this energy regime!



After a series of workshops

One-day satellite workshop prior to the MESON2023 conference in Cracow, June 21th, 2023.

event that was held in June 2023

Frank Nerling James Ritman Johan Messchendorp Karl-Heinz Kampert Piotr Salabura Tetyana Galatyuk

Workshop fee

Payment details

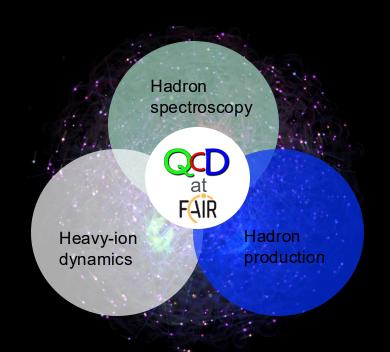
connected to the MESON2023 conference. For further details including an executive summary and

slides that were presented, we refer to https://indico.gsi.de/event/17693.

Physics opportunities with proton beams at SIS100

Physics opportunities with proton beams at SIS100 p,d,π GSI/FAIR

6-9 February 2024 Wuppertal University



QCD at FAIR Workshop 2024

Nov 11-14, 2024

GSI Helmholtzzentrum für Schwerionenforschung GmbH

White Paper

Purpose:

- Involve hadron, nuclear and heavy-ion (QCD) communities
- Develop hadron physics program for next decade at GSI/FAIR

Prepatory workshops

- Cracow, June 21, 2023
- Wuppertal, February 6-9, 2024
- GSI, November 11-14, 2024
- Italy, June, one week, 2025

Eds.: Johan Messchendorp & Frank Nerling

A comprehensive QCD program at GSI/FAIR!

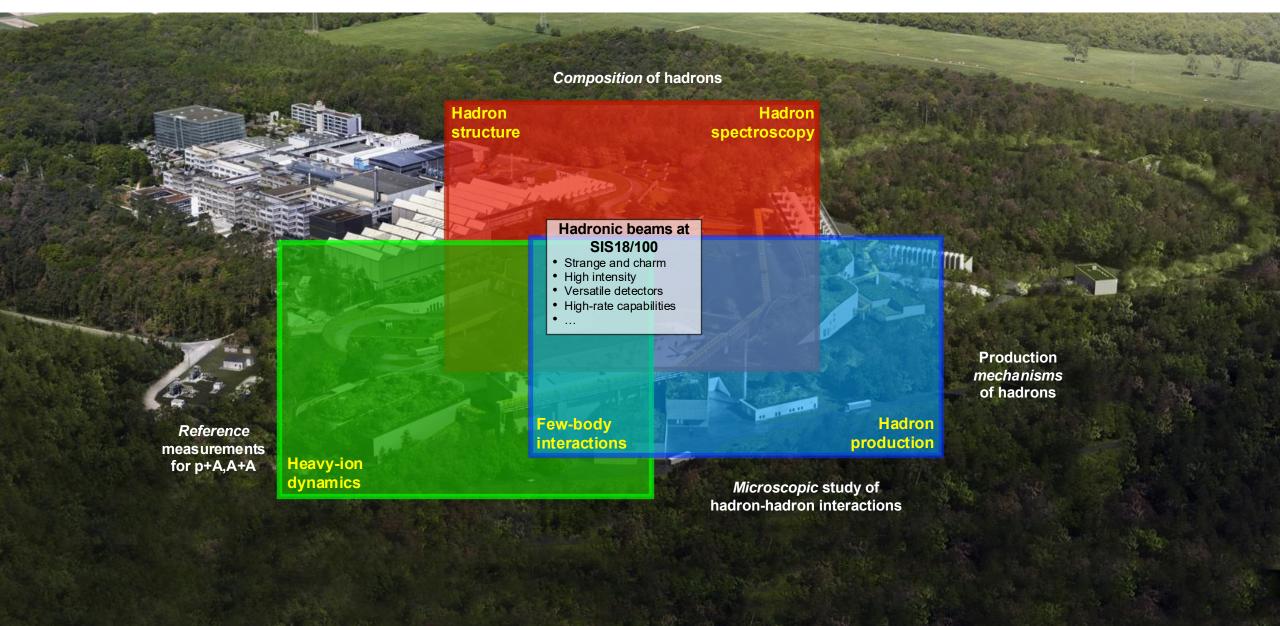
(from SIS18 to SIS100)

White Paper:

- Paper under production
- ~100 contributors
- Including leading theorists & experimentalist from strong-QCD communities
- ~130 pages
- Publication ~ autumn 2025

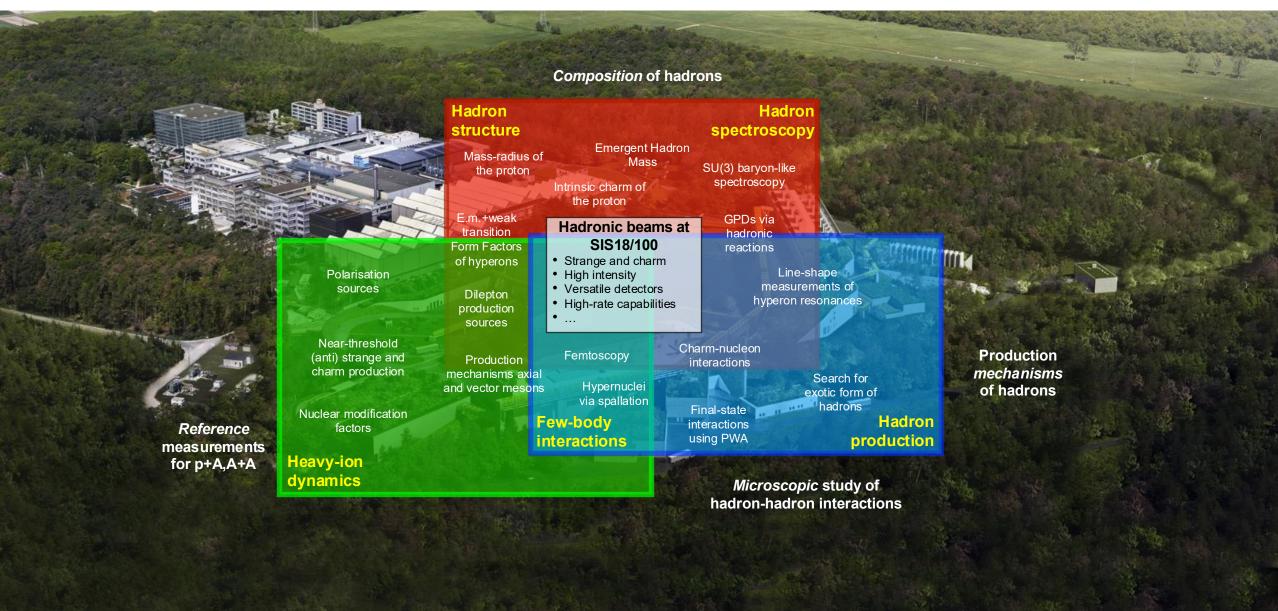
Hadron Physics at GSI/FAIR:

=> Prospects for next decade

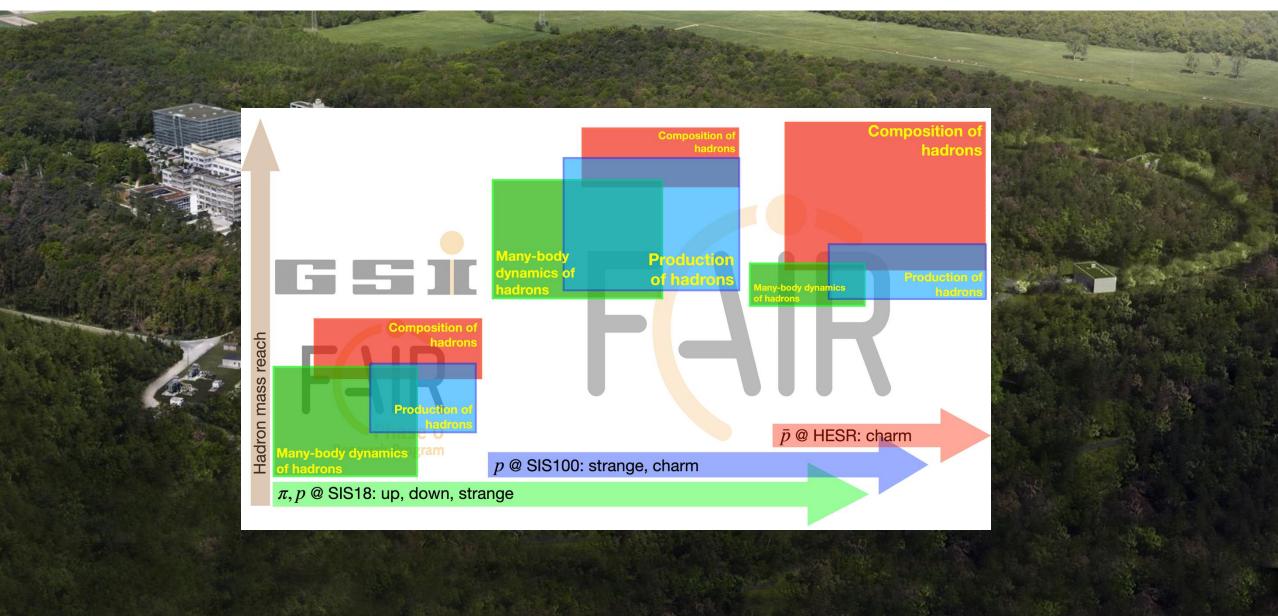

Con	tents	Convenors:
1 Int 1.1 1.2	Key Questions in Strong Interaction Physics	J. Messchendorp 3 F. Nerling 3 C. Roberts 5
2 Ex 2.1 2.2 2.3	ploiting hadronic beams Key features	T. Galatyuk 5 5 5 5 5 5 6 6 6 6 6 6 8
3 To 3.1 3.2	3.1.1 PWA approaches for 2-body final states: $\pi N \to MB$. A. Szczepaniak 🦠
4.1 4.2 4.3	4.2.1 Baryon spectrum / Meson-baryon interactions (Maxin Baryon-baryon interactions	G.Hanhart 15 n Mai) 17 . 18 . 18 . 20 . 20 . 20 . 21 . 21 . 22 . 22 . 22 . 22 . 23 . 23
5 Co 5.1 5.2	mposition of hadrons Baryon spectroscopy: charm and strangeness Hadron structure 5.2.1 Elastic and transition form factors 5.2.2 Nucleon structure and intrinsic charm 5.2.3 Weak decays of the Ω baryon	

	6 Exotic hadrons N. Brambilla 52					
6					52	
	6.1		ie		52	
	6.2	1	iments		53	
		6.2.1	e ⁺ e ⁻ experiments		53	
		6.2.2	Hadron-beam experiments		54	
	0.0	6.2.3	LHC experiments		56	
	6.3		quark exotics		57	
		6.3.1	Dibaryons		57	
		6.3.2	Light exotic mesons: hybrids, glueballs, and the $\phi(217)$,	59	
	6.4		quark exotics		60	
		6.4.1	Compositeness of exotic states		60	
		6.4.2	Exotic Baryons with two heavy quarks		61	
	6.5	Expec	tations		62	
7	Had	lrons a	and dileptons as probes of strongly interacting m	atter	62	
	7.1	Eleme	ntary πp , pp and pn reactions		63	
		7.1.1	Transition from hadron to parton interaction	J. Aichelin	63	
		7.1.2	Particle multiplicities as a function of \sqrt{s}	F Bratkovskava	63	
		7.1.3	Particle multiplicities as a function of \sqrt{s} Resonance studies in π -induced reactions	M'l'oroba	66	
	7.2	pA rea	actions	IVI. LOI EIIZ	66	
		7.2.1	Short range np correlation		67	
		7.2.2	Study of the in-medium properties of vector mesons by	y dileptons	67	
		7.2.3	Study of the in-medium properties of strange hadrons		69	
		7.2.4	Study of the in-medium properties of open and hidden		75	
		7.2.5	Production of light nuclei and hypernuclei		77	
		7.2.6	Determination of momentum dependence of the optical	d potential	78	
		7.2.7	Influence of the electromagnetic fields on particle dyna		79	
		7.2.8	Dark Matter search		79	
8	Cor	nectio	ons & input to astro(particle) physics	K. Kampert	82	
	COI	meetic	ms & input to astro(particle) physics	T. Saito	02	
9	Exp	erime	ntal facilities & requirements		82	
	9.1	GSI a	nd FAIR	C. Sturm	82	
		9.1.1	Opportunities at the FRS and S-FRS	J. Ritman · · · ·	82	
		9.1.2	Proton- and Pion-induced reactions with HADES		83	
		9.1.3	CBM experiment at SIS100		83	
	9.2	Comp	lementary Facilities		85	
		9.2.1	CERN		85	
		9.2.2	Jefferson Lab		85	
		9.2.3	K-Long Facility at Jefferson Lab		86	
		9.2.4	J-PARC		86	
		9.2.5	NICA		87	
		9.2.6	HIAF		87	
	10 Summary & conclusions J. Messchendorp					
10	Sur	nmary	& conclusions	F. Nerling	87	

A comprehensive QCD program at GSI/FAIR



A comprehensive QCD program at GSI/FAIR



A comprehensive QCD program at GSI/FAIR

Outside Visibility: NuPECC Physics News

Nuclear Physics News

Volume 35/No. 1

Nuclear Physics News is published on behalf of the Nuclear Physics European Collaboration Committee (NuPECC), an Expert Committee of the European Science Foundation, with colleagues from European Asia

facilities and methods

A Cross-Community-Driven Hadron Physics Program at GSI/FAIR

Strong-Quantum Chromodynamics (QCD) Research at the Facility for Antiproton and Ion Research (FAIR): "QCD at FAIR"

The strong interactions in the Standard Model of particle physics are described by QCD, a gauge theory based on the non-Abelian symmetry group known as color-SU(3). Among the remarkable phenomena arising from OCD are color confinement and the generation of hadronic mass, both linked to the self-interaction of gluons, the carriers of the strong force. Experimental approaches aim to deepen our understanding of OCD, focusing on uncovering the fundamental degrees of freedom that determine the formation and properties of matter across different conditions and scales.

A key focus of research at the Helmholtzzentrum für Schwerionenforschung GSI and FAIR accelerator complex in Darmstadt, Germany, is exploring QCD phenomena through the study of matter under extreme

conditions. The Compressed Baryonic Matter (CBM) will examine fundamental properties of dense, baryonrich systems that play an important role in understanding the physics of the interior of neutron stars and their mergers [1]. Complementarily, the nuclear physics community investigates nuclei at the limits of stability. focusing on extreme isospins and the inclusion of strangeness, such as in hypernuclei [2]. The hadron physics community maps the meson and baryon spectrum, searches for exotic hadronic states, and studies the processes behind matter formation [3]. At GSI/FAIR, the aim is to integrate these approaches to deepen our understanding of nonperturbative OCD ("strong QCD"), as shown in Figure 1.

The Facilities

complex in Darmstadt, Germany, is exploring QCD phenomena through the study of matter under extreme the study of matter under extreme

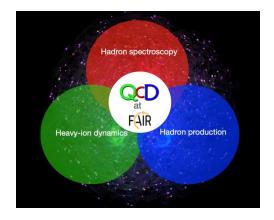
Composition of hadrons
Hadron
structure

Pacture

Cooperan

Cooperan

- Structure


Figure 1. A schematic overview of the QCD-driven research themes to be explored using the proton beams at FAIR, with a particular emphasis on the cross-disciplinary connections between hadron, nuclear, and heavy-ion physics.

communities at GSI/FAIR to address key QCD questions using advanced detectors and beams. The facility enables studies of matter from the light-quark (up, down, strange) sector, accessible at GSI, to charm-quark matter with the future SIS100 accelerator. With unprecedented beam intensities, high-acceptance detectors, and free-streaming data processing, FAIR will enable precision studies in strong OCD.

The existing SIS18 accelerator at GSI provides proton and heavy-ion beams with center-of-mass energies of up to about $\sqrt{s} = 3.5\,\mathrm{GeV}$ in the NN system. Moreover, pion beams are available reaching $\sqrt{s} = 2\,\mathrm{GeV}$ in the π N system with reasonable intensities. The High Acceptance Dilepton Spectrometer (HADES) [4] has been in operation at SIS18 for more than 20 years, addressing a rich heavy-ion related physics program and also dedicated open questions and topics in hadron physics, especially employing the available pion beam (see, e.g., Ref. [5]).

A central part of the future FAIR presently under construction at the GSI site will be the SIS100 accelerator providing proton and heavy ion beams to access center-of-mass energies of up to about $\sqrt{s} = 7.6\,\text{GeV}$ in the NN system. The versatile multipurpose CBM detector presently under construction will receive beams accelerated by SIS100.

Both experiments, HADES at SIS18 and CBM at SIS100, as well as, for example, the wide-angle shower apparatus at the Fragment Separator [6], allow addressing a wide range of hadron physics questions already before the

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz Forschungsakademie Hessen für FAIR (HFHF), Campus Frankfurt Goethe Universität Frankfurt am Main http://orcid.org/0000-0003-3581-7881

JOHAN MESSCHENDORP

GSI Helmholtzzentrum für
Schwerionenforschung GmbH, FAIR
GmbH, Darmstadt, Germany

http://orcid.org/0000-0001-6649-0549

JIM RITMAN (1)

GSI Helmholtzzentrum für

Schwerionenforschung GmbH

Ruhr-Universität Bochum

Forschungszentrum Jülich GmbH

(1)

http://orcid.org/0000-0002-1005-6230

Outside Visibility: NuPECC Physics News

Nuclear Physics News

Nuclear Physics News is published on behalf of the Nuclear Physics European Collaboration Committee (NuPECC), an Expert Committee of the European Science Foundation, with colleagues from Europe, America, and Asia

facilities and methods

A Cross-Community-Driven Hadron Physics Program at GSI/FAIR

Strong-Quantum Chromodynamics (QCD) Research at the Facility for Antiproton and Ion Research (FAIR): "QCD at FAIR"

The strong interactions in the Standard Model of particle physics are described by QCD, a gauge theory based on the non-Abelian symmetry group known as color-SU(3). Among the remarkable phenomena arising from OCD are color confinement and the generation of hadronic mass, both linked to the self-interaction of gluons, the carriers of the strong force. Experimental approaches aim to deepen our understanding of OCD, focusing on uncovering the fundamental degrees of freedom that determine the formation and properties of matter across different conditions and scales.

A key focus of research at the Helmholtzzentrum für Schwerionenforschung GSI and FAIR accelerator complex in Darmstadt, Germany, is exploring OCD phenomena through the study of matter under extreme

conditions. The Compressed Baryonic Matter (CBM) will examine fundamental properties of dense, baryonrich systems that play an important role in understanding the physics of the interior of neutron stars and their mergers [1]. Complementarily, the nuclear physics community investigates nuclei at the limits of stability. focusing on extreme isospins and the inclusion of strangeness, such as in hypernuclei [2]. The hadron physics community maps the meson and baryon spectrum, searches for exotic hadronic states, and studies the processes behind matter formation [3] At GSI/FAIR, the aim is to integrate these approaches to deepen our understanding of nonperturbative QCD ("strong QCD"), as shown in Figure 1

The goal of "OCD at FAIR" is to exploit synergies between the hadron, nuclear, and heavy-ion physics

Figure 1. A schematic overview of the QCD-driven research themes to be explored using the proton beams at FAIR, with a particular emphasis on the crossdisciplinary connections between hadron, nuclear, and heavy-ion physics.

communities at GSI/FAIR to address key QCD questions using advanced detectors and beams. The facility enables studies of matter from the lightquark (up, down, strange) sector, accessible at GSI, to charm-quark matter with the future SIS100 accelerator. With unprecedented beam intensities, high-acceptance detectors, and free-streaming data processing, FAIR will enable precision studies in

The existing SIS18 accelerator at GSI provides proton and heavy-ion beams with center-of-mass energies

Toward a White Paper and a **Cross-Community-Driven Program**

A group of researchers [14] from diverse communities at GSI/FAIR organized several workshops [15–17] to

14. T. Galatyuk, N. Hermann, C. Höhne, K.H. Kampert, J.G. Messchendorp, F. Nerling, J. Ritman, P. Salabura, K. Schönning and J. Stroth.

FRANK NERLING (D)

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz Forschungsakademie Hessen für FAIR (HFHF), Campus Frankfurt Goethe Universität Frankfurt am Main (iii) http://orcid.org/0000-0003-3581-7881

Plus: Conference contributions

→ Presentations and posters at workshops and confernece

dedicated open questions and topics in hadron physics, especially employing the available pion beam (see,

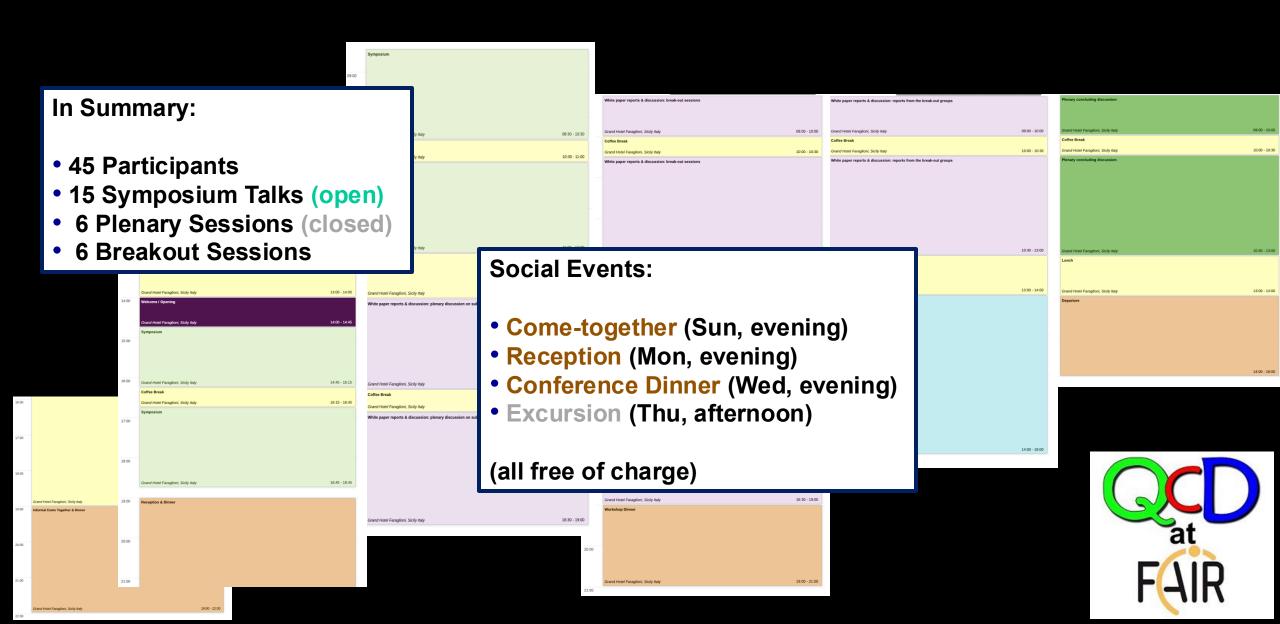
A central part of the future FAIR presently under construction at the GSI site will be the SIS100 accelerator providing proton and heavy ion beams to access center-of-mass energies of up to about $\sqrt{s} = 7.6 \,\text{GeV}$ in the NN system. The versatile multipurpose CBM detector presently under construction will receive beams accelerated by SIS100.

Both experiments, HADES at SIS18 and CBM at SIS100, as well as, for example, the wide-angle shower apparatus at the Fragment Separator [6], allow addressing a wide range of hadron physics questions already before the

JOHAN MESSCHENDORP (D) GSI Helmholtzzentrum für Schwerionenforschung GmbH, FAIR GmbH, Darmstadt, Germany http://orcid.org/0000-0001-6649-0549

JIM RITMAN (1) GSI Helmholtzzentrum für Schwerionenforschung GmbH Ruhr-Universität Bochum Forschungszentrum Jülich GmbH

"EMMI Collaboration Meeting", 2025



EMMI Collaboration Meeting: "QCD at FAIR" 2025

Monday June 23rd

14:00 Opening Frank Neeling et al. Welcome by INFN Alessala Triconsi Welcome by INFN Santo Gamino Welcome by INFN Sistano Romano Welcome by UniMe Masina Trimuschi Welcome FAIR: Thomas Misson Astro(particle) physics Karl-Hainz Kampart 15:00 Grand Notel Faragiloni, Sicily Italy 1445 - 15:15 Harrisa Zhrosaczyk Grand Hotel Faragiloni, Sicily Italy 15:15 - 15:45"EoS and Compact Stars" Florella Bargio 16:00 Grand Notel Faragiloni, Sicily Italy 15:45 - 16:15Coffee Break Grand Notel Faragiloni, Sicily Italy 16:15 - 16:45Hadron spectroscopy at B factories Alexandro Boschetti 17:00 Grand Notel Faragiloni, Sicily Italy 1645 - 1715"Highlights and recent results from BESH" Wolfgang Grad! 17:15 - 17:45Grand Notel Faragiloni, Sicily Italy Hyperon structure Andrew Kupuc 18:00 Grand Hotel Faragiloni, Sicily Italy 17:45 - 10:15Tridige Master Mai Grand Notel Faragiloni, Sicily Italy 10:15 - 10:45 19:00 Reception & Dinner

Tuesday June 24th

	Hypernuclei	Benjamin Dönigus
	Grand Notel Favaglioni, Sicily Naly	08:30 - 09:00
09:00	Meson-nuclei dynamica	Kenta Itahashi
	Grand Hotel Favaglioni, Sicily Haly	09:00 - 09:30
	Hadron physics at JPARC	Kazsya Aoki
	Grand Hotel Faragiloni, Sicily Halp	09:30 - 10:00
10:00	Hadronisation studies at CERN	Water Feuilland
	Grand Notel Faragiloni, Sicily /tally	10:00 - 10:10
	Coffee Break	
	Grand Hotel Favagloci, Sicily Italy	10:30 - 11:00
11:00	Physics with Kaon Beams	Sean Dobbs
	Grand Notel Favagloci, Sicily Naly	11:00 - 11:30
	JPAC .	Daniel Witney
	Grand Hotel Faragiloni, Sicily Haly	11:30 - 12:00
12:00	"AMBER: A QCD Facility at CERN"	Shrian DieAl
	Grand Notel Faragiloni, Sicily Naly	12:00 - 12:10
	"Nucleon structure from Generalized Parton Distributions"	Matsuki Torsida
	Grand Hotel Faragiloni, Sicily Halp	12:30 - 13:00
12:00	Lunch	
	Grand Notel Faragiloni, Sicily /taly	12:00 - 14:00

In Summary:

- 45 Participants
- 15 Symposium Talks (open)

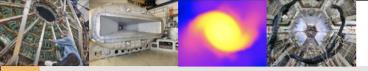
QCD at FAIR Workshop, June 2025

This series of workshops is organised for:

- Hadron-driven "QCD" physics at FAIR a win-win-win situation!
- Heavy-ion physics perspectives:
 - Crucial reference to heavy-ion reactions
 - Detailed information on baryons and meson-baryon couplings
- Nuclear physics perspectives:
 - (Ab-initio) baryon-baryon data in flavour SU(3)
- Hadron physics perspectives:
 - Controllable tool for hadron spectroscopy
 & structure studies in u,d,s,c sectors
 - Intermediate physics program with pions& protons towards antiprotons
- => Summarising White Paper will be concluded this week

Let me wish us a very interesting symposium to introduce our workshop, with constructive discussions and progress – thank you very much for your participation!

QCD at FAIR Workshop, June 2025



This series of workshops is organised for:

- Hadron-driven "QCD" physics at FAIR a win-win-win situation!
- Heavy-ion physics perspectives:
 - Crucial reference to heavy-ion reactions
 - > Detailed information on baryons and meson-baryon couplings
- - & structure studies in u,d,s,c sectors
 - Intermediate physics program with pions & protons towards antiprotons
- => Summarising White Paper will be concluded this week

Let me wish us a very interesting symposium to introduce our workshop, with constructive discussions and progress – thank you very much for your participation!

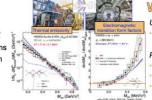
A Hadron Physics Program – QCD at FAIR

FAIR - The Facility to study QCD

- What is the origin of mass (only ~2% by Higgs)?
- How is QCD matter formed?
- What are the underlying symmetries?
- Degrees of freedom (quarks/gluons vs baryons/mesons)?
- Properties of strongly interacting (baryonic) matter?
- Composition and nature of (exotic) hadrons?
- FAIR: "QCD matter at extremes"

GSI

F(AIR

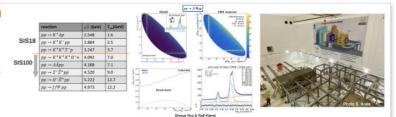

Towards a White Paper

- Develop hadron physics program for next decades
- Form a community involving all "QCD pillars"
- Theory and experiment
- Nearly a hundred people involved
- Series of workshops in 2023-2025:

HADES at SIS18

- Diverse beams, incl. p, π
- Up to $\sqrt{s}_{-} = 3.5 \text{GeV}, \sqrt{s}_{-} \approx 2 \text{GeV}$
- E.m. structure of (light) baryons
- Baryon and meson production
- Strangeness formation
- Hyperon-baryon interactions
- SU(3) flavour dynamics!

FRS: Precise forward spectr. & WASA: Large acceptance detecto



- Hypernuclei: heavy ion beams
- Inv. mass spectroscopy, analyses

CBM at SIS100

- High-rate capabilities!
- Up to $\sqrt{s} = 7.5 \text{GeV}$
- Multi-strangeness and charm-rich matter!
- Multi-purpose detector
- Hadron & heavy-ion & nuclear physics

Summary & outlook

- Comprehensive hadron physics program identified
- Community from theory and experiment formed
- Synergies & complementary expertises

... a summarizing White Paper is underway.

Outside Visibility: GSI Centre Evaluation

GSI Helmholtzzentrum für Schwerionenforschung

Research Field Matter

Evaluation Report

Executive summary

Within the realm of strongly interacting systems, GSI's MU program has gained international recognition due to its exceptional user facilities, instruments, and research focus on multi-body systems. This program has been pivotal in achieving numerous significant research highlights through both internal endeavors and fruitful collaborations worldwide. Nuclear Structure groups study unique properties of exotic nuclei and the physics and chemistry of superheavy elements with very high impact results. A remarkable example of this impact is the nuclear astrophysics program which leverages GSI's unmatched ion and energy accessibility. The coherent combination of the high-rate capacities of HADES and future CBM at low/intermediate energies with ALICE at high energies will provide unprecedented insights into the hot and dense nuclear matter phase diagram. HADES has already mapped a crucial part of this diagram at lower energies, complementing RHIC and LHC data, and its low-energy role becomes even more vital with RHIC's anticipated closure. Due to funding constraints, the comprehensive FAIR project will proceed in stages, with the final phase, encompassing PANDA, currently postponed. Recognizing the significant investment in PANDA detector components, the GSI and HIM groups have made a wise decision to integrate these elements into the FAIR Phase-0 experiments. This strategic move maximizes scientific output from existing resources. The committee strongly supports developing a comprehensive hadronic physics program utilizing the funded FAIR experiments, seeing it as an insightful and promising direction for their developing program.

"The Universe in the Laboratory"

50 Years of Quantum Chromodynamics

arXiv:2212.11107 (2023)

Franz Gross^{a,1,2}, Eberhard Klempt^{b,3},

Stanley J. Brodsky^{c,4}, Andrzej J. Buras^{c,5}, Volker D. Burkert^{c,1}, Gudrun Heinrich^{c,6}, Karl Jakobs^{c,7}, Curtis A. Meyer^{c,8}, Kostas Orginos^{c,1,2}, Michael Strickland^{c,9}, Johanna Stachel^{c,10}, Giulia Zanderighi^{c,11,12},

Nora Brambilla^{5,12,13}, Peter Braun-Munzinger^{10,14}, Daniel Britzger¹¹, Simon Capstick¹⁵, Tom Cohen¹⁶, Volker Crede¹⁵, Martha Constantinou¹⁷, Christine Davies¹⁸, Luigi Del Debbio¹⁹, Achim Denig²⁰, Carleton DeTar²¹, Alexandre Deur¹, Yuri Dokshitzer^{22,23}, Hans Günter Dosch¹⁰ Jozef Dudek^{1,2}, Monica Dunford²⁴, Evgeny Epelbaum²⁵, Miguel A. Escobedo²⁶, Harald Fritzsch^{d,27}, Kenji Fukushima²⁸, Paolo Gambino^{11,29}, Dag Gillberg^{30,31}, Steven Gottlieb³², Per Grafstrom³³, Massimiliano Grazzini³⁴, Boris Grube¹, Alexey Guskov³⁵, Toru Iijima³⁶, Xiangdong Ji¹⁶, Frithjof Karsch³⁷, Stefan Kluth¹¹, John B. Kogut^{38,39}, Frank Krauss⁴⁰, Shunzo Kumano^{41,42}, Derek Leinweber⁴³, Heinrich Leutwyler⁴⁴, Hai-Bo Li⁴⁵, Yang Li⁴⁶, Bogdan Malaescu⁴⁷, Chiara Mariotti⁴⁸, Pieter Maris⁴⁹, Simone Marzani⁵⁰, Wally Melnitchouk¹, Johan Messchendorp⁵¹, Harvey Meyer²⁰, Ryan Edward Mitchell⁵², Chandan Mondal⁵³, Frank Nerling^{51,54,55}, Sebastian Neubert³, Marco Pappagallo⁵⁶, Saori Pastore⁵⁷, José R. Peláez⁵⁸, Andrew Puckett⁵⁹, Jianwei Qiu^{1,2}, Klaus Rabbertz⁶⁰, Alberto Ramos⁶¹, Patrizia Rossi^{1,62}, Anar Rustamov^{51,63}, Andreas Schäfer⁶⁴, Stefan Scherer⁶⁵, Matthias Schindler⁶⁶, Steven Schramm⁶⁷, Mikhail Shifman⁶⁸, Edward Shuryak⁶⁹, Torbjörn Sjöstrand⁷⁰, George Sterman⁷¹, Iain W. Stewart⁷², Joachim Stroth^{51,54,55}, Eric Swanson⁷³, Guy F. de Téramond⁷⁴, Ulrike Thoma³, Antonio Vairo⁷⁵, Danny van Dyk⁴⁰ James Vary⁴⁹, Javier Virto^{76,77}, Marcel Vos⁷⁸, Christian Weiss¹, Markus Wobisch⁷⁹ Sau Lan Wu⁸⁰, Christopher Young⁸¹, Feng Yuan⁸², Xingbo Zhao⁵³, Xiaorong Zhou⁴⁶

50th birthday of QCD

- About two years ago, important date
 => Comprehensive Review Article
- Chapter "The future": QCD at FAIR.

```
13.5 QCD and (g-2) of the muon

14 The future

14.1 JLab: the 12 GeV project and beyond

14.2 The EIC program

14.3 J-PARC hadron physics

14.4 The NICA program

14.5 QCD at FAIR

14.6 BESIII

14.7 BELLE II

14.8 Heavy flavors at the HL-LHC

14.9 High-p_{\rm T} physics at HL-LHC

Postscript
```

FAIR – The Facility to study QCD