Simulation results summary

CBM MUST

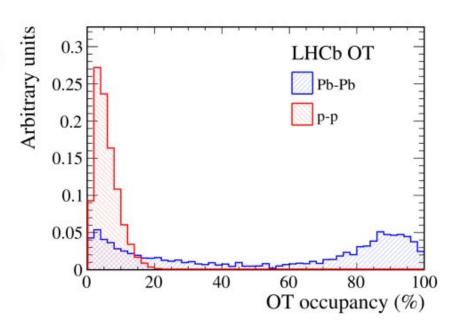
Shreya Roy, GSI

- Hit rates
- Occupancy

Particle flux (maximum) near beam pipe

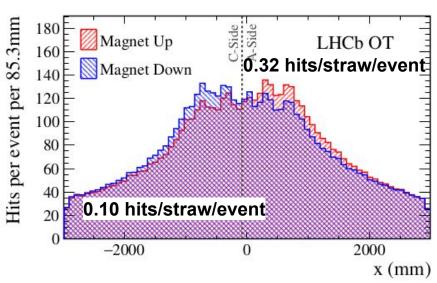
12 AGeV AuAu

10 AGeV AuAu

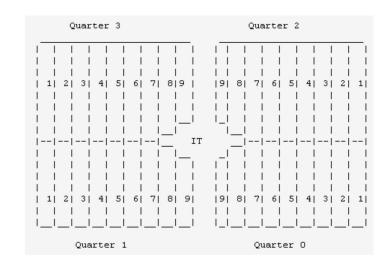

MuCh/MUST	FLUKA (straws) (MHz/cm2)	GEANT3 straws (mbias) (MHz/cm2)	GEANT3 straws (central) (MHz/cm2)	GEANT3 RPC (central) MHz/cm2)
3rd station	0.036	0.007	0.016	0.057
4th station	0.01	0.005	0.004	0.015

Preliminary numbers

^{*}Thanks to Anna, Anjali & Abhishek for Fluka and CBM transport simulations.


OCCUPANCY IN PROTON AND LEAD COLLISIONS

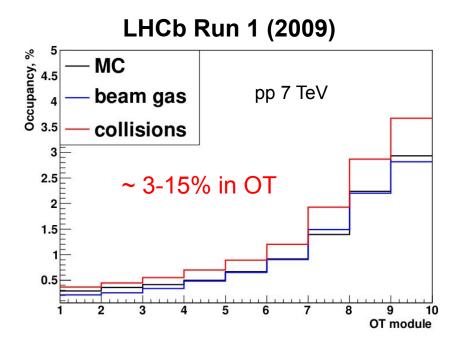
- Average occupancy for ppcollisions in Run II (2015&2016) is 12.7%.
- Only 30 noise hits per event compared to ~6800 hits from particles
- Maximum particle flux:
 168 kHz/cm²
- OT has been operated during Pb-Pb runs, but analysis limited to event centrality of 60%

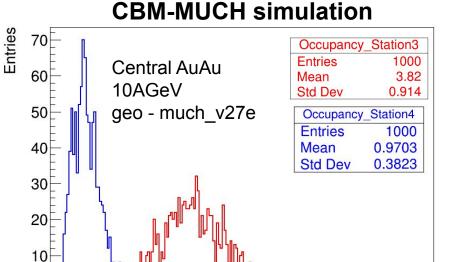


Hit rates/straw in LHCb in Run2

pp collsions (COM energy 1.38 TeV)

P. d'Argent et al 2017 JINST 12 P11016


At the central region: (LHCb) 0.32×30 MHz = 9.5 MHz/straw (CBM*) $\sim 0.086 \times 10$ MHz = 0.86 MHz/straw


At the sides: (LHCb) $0.1 \times 30 \text{MHz} = 3 \text{ MHz/straw}$ (CBM*) $\sim 0.02 \times 10 \text{MHz} = 0.2 \text{ MHz/straw}$

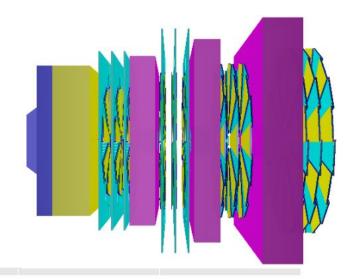
*CBM Sim (mbias) by Anjali&Abhishek

Occupancy in LHCb and CBM

Occupancy = $\frac{\text{no. of straws fired}}{\text{total no. of straws}}$

Occupancy (%)

3


^{*}Thanks to Anjali & Abhishek for CBM transport simulations.

CBM MUST

- Introduction LHCb OT
- History and Status of OT
- Feasibility of using OT at CBM
- Introducing MUST, a CBM PANDA group
- Geometry MUST
- Simulations (FLUKA & GEANT3)
- PASTA (1 slide) is a technological project
- Summary & Discussions (open)
- Outlook (group meetings to be continued)- collecting comments/cristicism

backup

Particle flux (maximum) near beam pipe

Hit Density per Event

Peak Density/cm ²	4 AGeV	6 AGeV	8 AGeV	10 AGeV	12 AGeV
Station 3	0.00090	0.0022	0.0040	0.0057	0.0076
Station 4	0.00028	0.00056	0.0010	0.00152	0.0022

Particle rate per event multiplied by 10MHz to get in per second particle rate