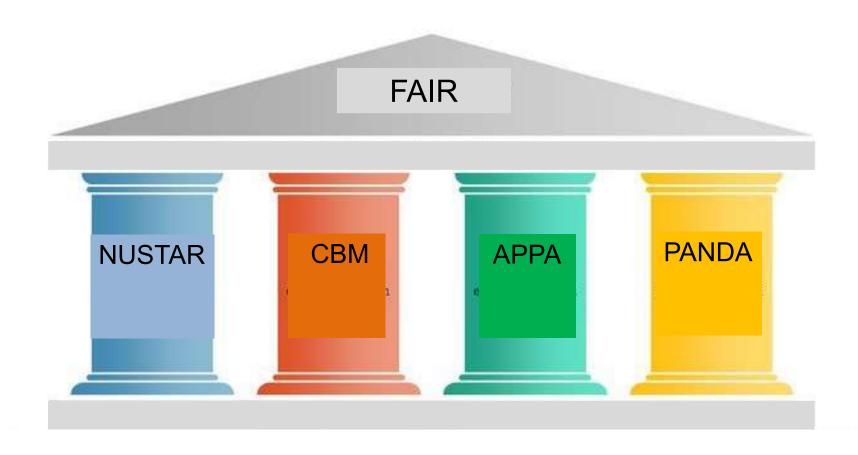


NUSTAR collaboration news Zsolt Podolyák

NUSTAR week, Prague, 30 September 2025

India

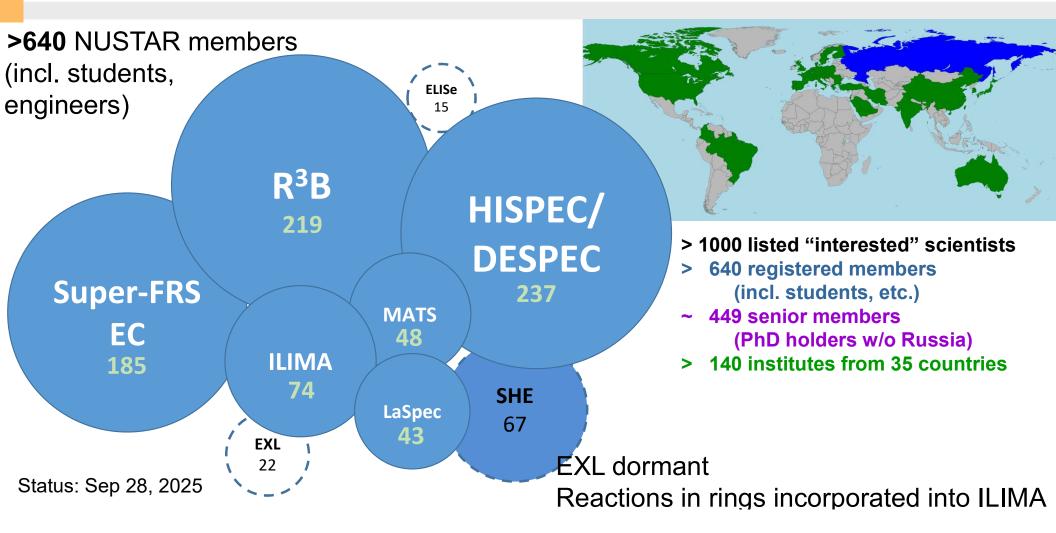

Sweden

Czech Republic

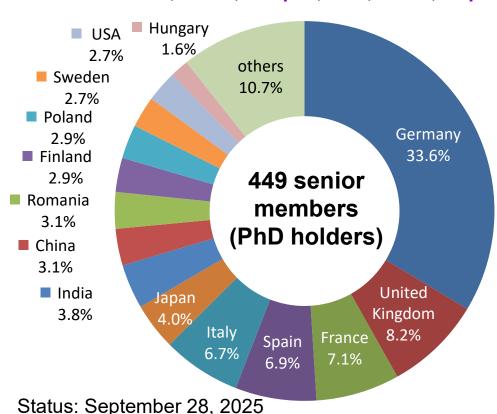
FAIR and its pillars



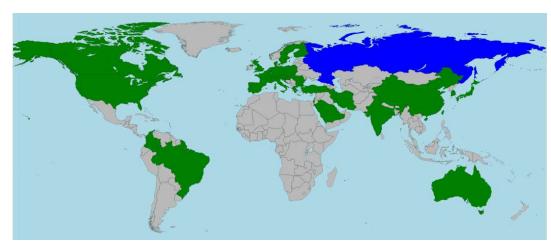
Overarching physics case: the creation of the (heavy) chemical elements



NUSTAR sub-collaborations and members (without Russia)



NUSTAR Collaboration senior members



NUSTAR collaboration senior members (PhD holder without Russia) for collaboration common fund from HISPEC/DESPEC, MATS, LaSpec, R3B, ILIMA, Super-FRS EC

- > 1000 listed "interested" scientists
- > 640 registered members (incl. students, etc.)
- ~ 449 senior members (PhD holders w/o Russia)
- > 140 institutes from 35 countries (w/o Russia)

Secured funding and expression of interest in funding from 22 countries (incl. Russia) (incl. 10 FAIR partner countries)

Super-FRS EC

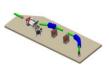
MATS

R3B

ILIMA

SHE

ELISE


EXL

									0
	Super-FRS	HISPEC/DESPEC	LASPEC	MATS	R3B	ILIMA	SHE	ELISe	EXL
Masses		Q-values, isomers		dressed ions,	unbound nuclei	bare ions,	precision		
				highest precision		mapping study	mass of SHEs		
Half-lives	psns-range	dressed ions,			resonance width,	bare ions,	μsdays		
		μSS			decay up to 100ns	msyears			
Matter radii	interaction x-				interaction x-				matter densitiy
	section				section				distribution
Charge radii	charge-changing		mean square		charge-changing			charge density	
	cross sections		radii		cross sections			distribution	
Single-	high resolution,	high-resolution	magnetic	evolution of shell	quasi-free	evolution of	shell structure		low momentum
particle	angular	particle and γ-ray	moments,	str., pairing int.,	knockout, short-	shell closures,	of SHEs		transfers
structure	momentum	spectroscopy	nucl. spins	valence nucl.	range and tensor	pairing corr.			
Collective		electromag.	quadrupole	halo structure	dipole response	changes in		electromag.	monopole
behavior		transitions	moments			deformation		transitions	resonance
EoS					polarizability,			neutron skin →	neturon skin,
					neutron skin				Compressibility
Exotic	bound mesons,								
Systems	hypernuclei,								
	nucleon res.								

Timeline 2021 –

2021-2022	FAIR-0 experiments	(27 NUSTAR exps.+tests)
	<u> </u>	•

No experiments (but there were tests)

FAIR-0 experiments (27 NUSTAR exps.+tests)

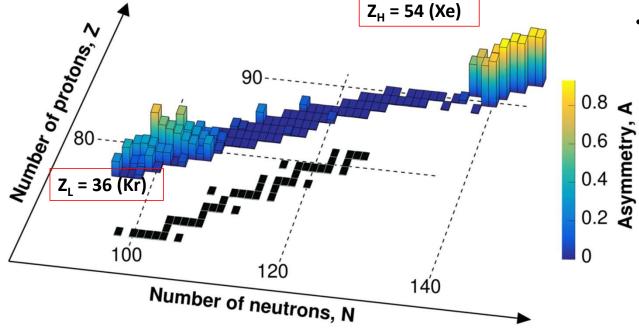
2026-2027 FAIR-0 experiments (G-PAC in 2025)

End 2027 -> Early Science (with SuperFRS)

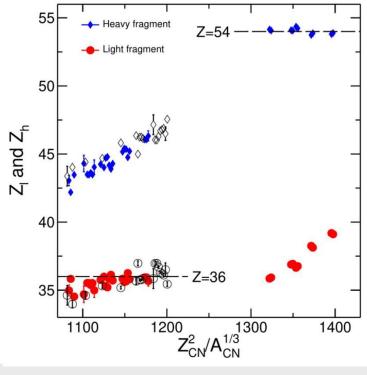
End 2028 -> First Science (with SuperFRS and SIS100)

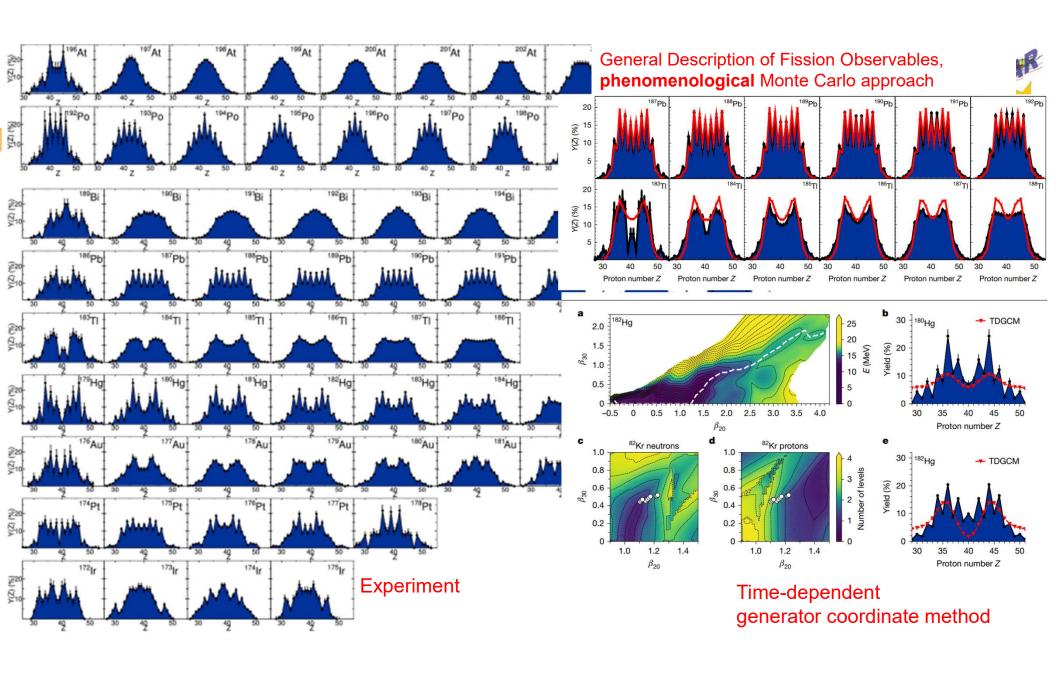
Publications 2021-2024

NUSTAR database (based on GSI repository: https://repository.gsi.de/)


		Nature		DDC/			DhD 1	_	
		family; PRL	PLB	PRC/ PRA	NIM	Other	PhD diss.	Total	
R3B	2021-24	5	3	10	4	20	9	51	
HISPEC/D ESPEC	2021-24	3	8	6	6	18	4	45	
SuperFRS- EC	2021-24	2	3	3	17	16	2	43	
ILIMA	2021-24	3	0	2	1	6	0	12	
SHE	2021-24	8	4	15	9	52	4	92	
LASPEC/ MATS	2021-24	3	0	0	0	1	0	4	
NUSTAR	2024	7	5	3	5	30	13	63	
	2023	6	5	5	14	35	4	69	
	2022	6	4	16	10	31	0	67	
	2021	5	4	12	8	17	2	48	
NUSTAR	2021-24	24	18	36	37	113	19	247	

A New Island of Asymmetric Fission

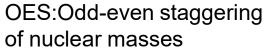


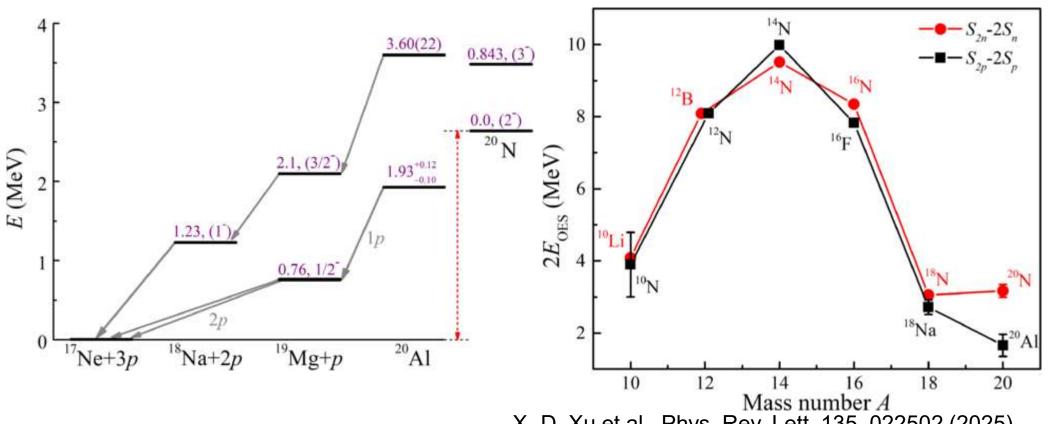


Unlike the actinides, the asymmetric fission in the neutron deficient sub-lead region is driven by shell effect in the light fragment.

Results

- First set of charge distribution across a wide range of exotic fissioning systems.
- Experimental evidence of strong protonshell stabilization at Z=36

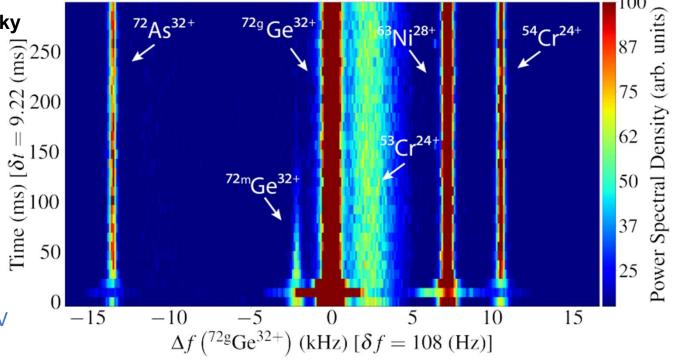




Isospin symmetry braking in three-proton emitter ²⁰Al

X.-D. Xu et al., Phys. Rev. Lett. 135, 022502 (2025)

Combined Schottky + Isochronous Mass Spectrometry



New lifetime record: 1 ms in April 2025, bridge to decay spectroscopy

High precision isochronous condition

Mass resolution ~10-6

Single-ion sensitivity of new Schottky

excitation energies down to \sim 100 keV and half-lives as short as \sim 10 ms.

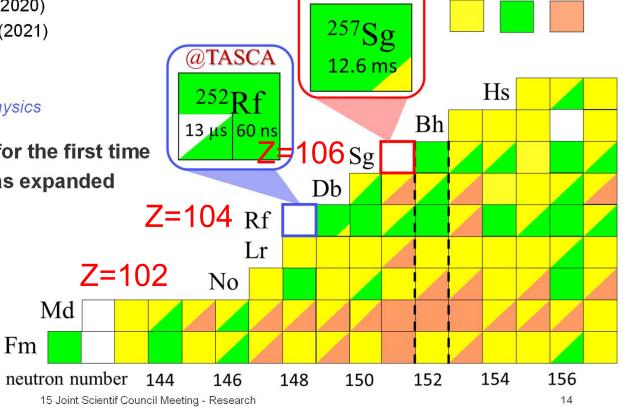
D. Freire-Fernandez, W. Korten et al., Phys. Rev. Lett. 133, 022502 (2024)

Discoveries of the new ²⁵⁷Sg and K-isomer in Sg

 α decay fission β/EC decays

Successful program on the K-isomers of superheavy

nuclei @TASCA


- ²⁵⁴Rf: J. Khuyagbaatar *et al.*, NPA 994, 121662 (2020)
- ²⁵⁶Rf: J. Khuyagbaatar et al., PRC 103, 064303 (2021)
- ²⁵²Rf: J. Khuyagbaatar, P. Mosat et al.,

Phys. Rev. Lett. 134, 022501 (2025)

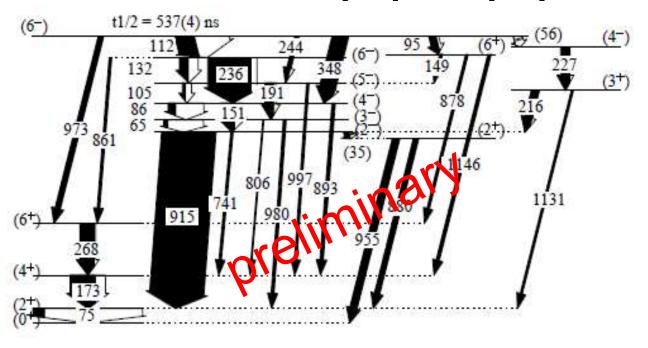
Editors' Suggestion / Featured in Physics

- Detection of a high-K state in Sg isotope for the first time
- The border for the known Sg isotopes was expanded by the discovery of the new ²⁵⁷Sg

P. Mosat, J. Khuyagbaatar et al., Phys. Rev. Lett. 134, 232501 (2025) Editors' Suggestion

@TASCA

Rare-earth nuclei approaching N=104: ¹⁶⁸Dy₁₀₂


Albers (GSI), Grahn (JYFL), Petrache (Paris-Saclay), Werner (TUD), Analysis: Johan Emil Larsson

238U beam

(4-) 0.57(7) μ s 1378 40.3 (3+) 1338 (3+,4+) 151.7 111.4 1227 347.8 (1130) (3-) 990 (1089) (978) (1089) (742) 914.8 (4+) 75.3 0 168 Dy 102 Almost 2000x increase in statistics

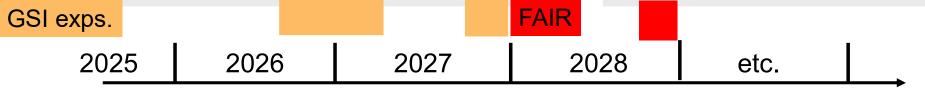
170Er beam

v5/2⁻[512] x v7/2⁺[633]

G-PAC outcome: experiments in 2026-2027

	outcome	A shifts	A- shifts
ILIMA	1 A; 3 A-; 3 B	15	27
HISPEC/DESPEC	3 A (1 resubmitted); 1 A-; 2 B	36	14
	4 A; 0 A-; 3B; 4C; (one A for		
SuperFRS-EC	applications proposal)	48	0
R3B	2 A (1 resubmitted); 1 A-; 3 B	48	9
SHE	4 A ;2 A-	216	81
NUSTAR:	TOTAL:	363	131
	granted experiments has also been made puhttps://gate.gsi.de/cgi-bin/prop-overview?ra		

New 186W beam;


Draft schedule soon;

test/commissioning time?

From GSI to FAIR (simplified)

Early Science: SIS18-SuperFRS increased secondary beam intensity

First Science:

SIS18-SIS100-SuperFRS increased primary beam intensity

End of 2026: NUSTAR equipment moving to High-Energy Cave at FAIR To be ready to take beam from end of 2027

Start of FAIR: First NUSTAR results

Main aim to show that FAIR is running

- ⇒Need to be **published fast**
- ⇒Low risk (follows directly from SuperFRS commissioning)
- ⇒Use some new capability:

secondary beam intensity

from primary beam

from transmission

higher beam energy (> 1GeV/u) higher SuperFRS transmission

equipment

Lessons from FRIB (and RIKEN):

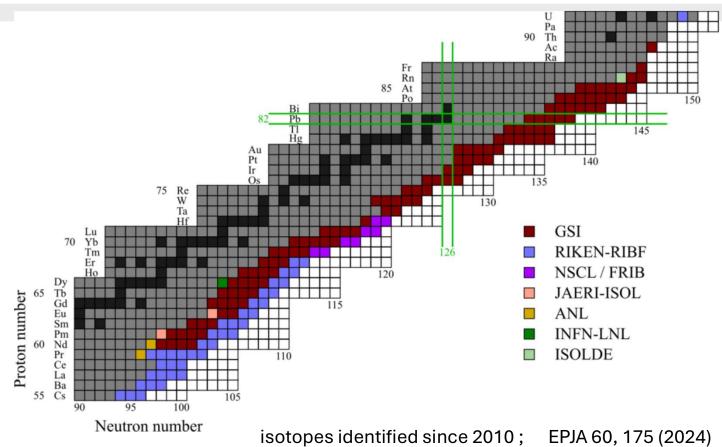
Exps.: May 2022 first exp

First publications:

PRL on new lifetimes N>28 (published Nov. 2022)

PRL on unexpected isomer 32Na (June 2023)

PRL on new isotopes 198Pt beam (Feb. 2024;


exp Feb. 2023)

		100
Rank	Laboratory	Isotopes
1	Berkeley	640
2	Darmstadt	445
3	Dubna	223
4	Cambridge	218
5	RIKEN	196
6	Argonne	114
7	CERN	111
8	GANIL	84
9	Oak Ridge	79
10	Michigan State	77
11	Orsay	71
12	Chicago	53
	Los Alamos	53
14	Brookhaven	46
15	Jyväskylä	44
16	Grenoble	39
17	Berlin	38
18	Studsvik	34
	Lanzhou	34
20	Ohio State	33
	McGill	33
22	Amsterdam	29
23	Mainz	23
	Harwell	23

New isotopes (+lifetimes, isomers)

https://frib.msu.edu/public/nuclides

Ranking of (co) Author: Top 1000

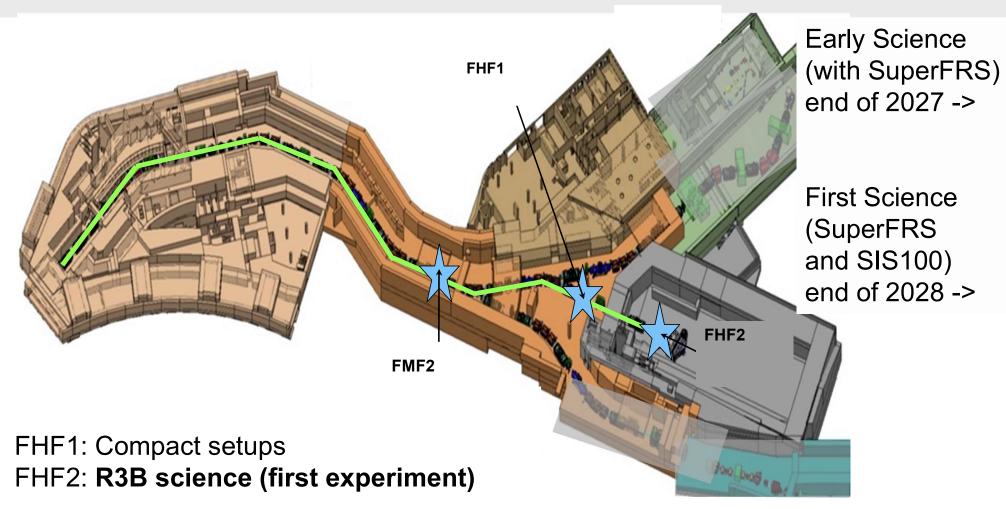
go to search page

Rank	(co) author	# of Isotopes
1	H. GEISSEL	279
2	T. KUBO	245
3	M. PFUTZNER	233
4	G. MUNZENBERG	220
5	F. W. ASTON	205
6	P. ARMBRUSTER	203
7	N. INABE	172
8	N. FUKUDA	171
9	M. BERNAS	164
10	D. P. BAZIN	163
11	H. TAKEDA	155
12	K. SUMMERER	154
13	T. SUMIKAMA	149
14	H. BABA	148
15	A. HEINZ	146
16	S. CZAJKOWSKI	133
17	J. BENLLIURE	132

Symposium in honour of Hans Geissel 25 November 2025

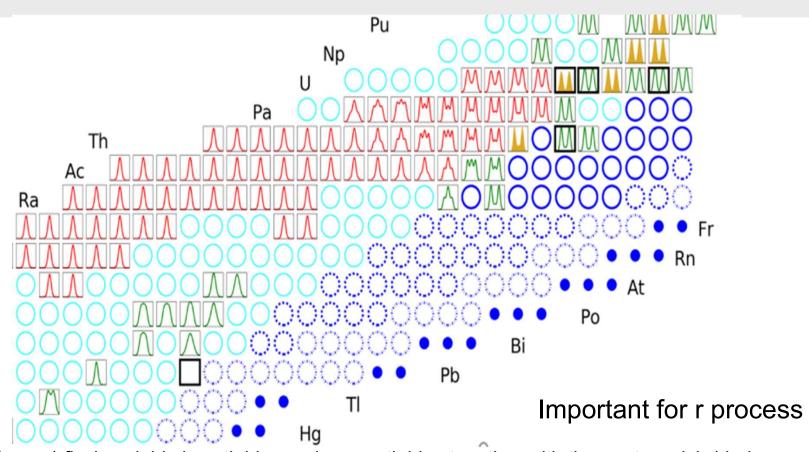
Ranking of (co) Author: Top 1000

go to search page


Rank	(co) author	# of Isotopes
1	H. GEISSEL	279
2	T. KUBO	245
3	M. PFUTZNER	233
4	G. MUNZENBERG	220
5	F. W. ASTON	205
6	P. ARMBRUSTER	203
7	N. INABE	172
8	N. FUKUDA	171
9	M. BERNAS	164
10	D. P. BAZIN	163
11	H. TAKEDA	155
12	K. SUMMERER	154
13	T. SUMIKAMA	149
14	H. BABA	148
15	A. HEINZ	146
16	S. CZAJKOWSKI	133
17	J. BENLLIURE	132

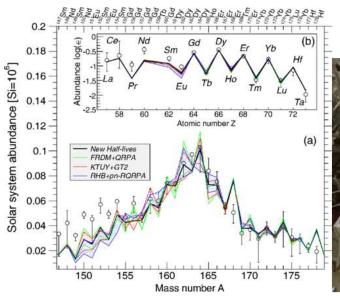
13 May 1950 – 29 April 2024

Experiments location at Super-FRS: ES and FS



Fission

measured Z (red) and A (green) fission yields in actinides and pre- actinides together with the neutron-rich (dark blue circles and dots) and other nuclei (light blue circles) that can be investigated at FAIR

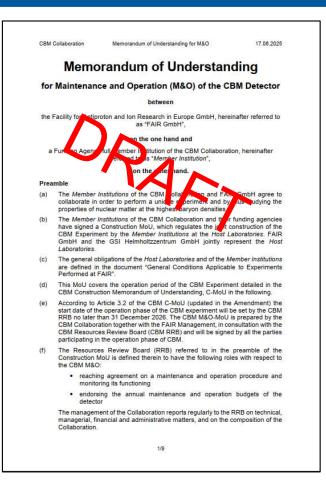

Physics in the SuperFRS tunnel

Production of exotic neutron-rich isotopes

- Measurement of their beta-decay lifetimes
- Measurement of their masses

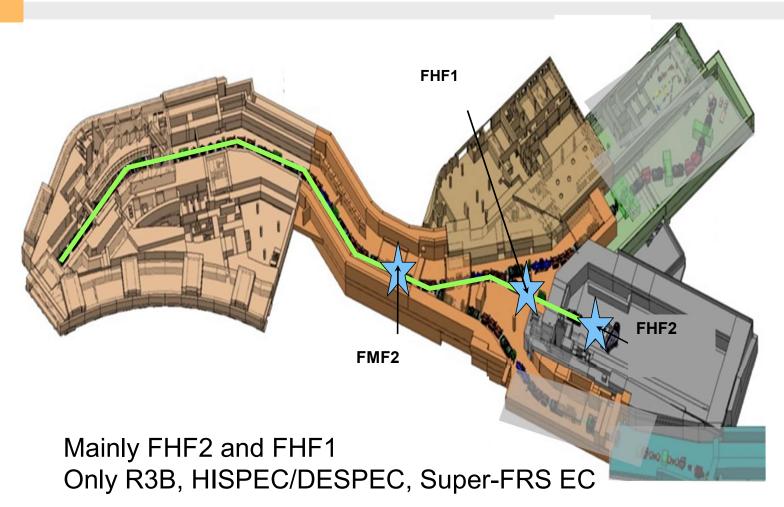
Astro impact, based on theory

NUSTAR Score Card (ES / FS) – Sept. 2025


	NUSTAR sub-system	TDR	Cost [k€ 2005]	Funding	Construction	Date completion	Test/ Commissioning
	Early and First Science (ES / FS)						
	Cave infrastr.		1,618			12/2026	
	HISPEC/DESPEC		10,841			07/2027	
	MATS		462			08/2024	
FS	LaSpec		67			06/2021	
ES /	R3B		18,462			09/2027	
ш	ILIMA		424			12/2027	
	Super-FRS EC		568			07/2026	
		99.4% value weighted	32,442	95.5% secured	66.7% value weighted		58.3% value weighted
Change since report 2025 I		+ 0.9%	- 312.0	+ 0.1%	+ 2.0%		+ 1.1%

- Infrastructure: CSC construction progress
- R3B: TRT, ACTAF, Proton Arm Spectrometer, NeuLAND: construction progress
- Super-FRS EC: TDR ice target/tensor force detection submitted

Operation MoU – (1st Draft of CBM)


- Draft version from June 17, 2025
 - Based on Maintenance & Operation MoU of CERN (e.g. ALICE)
 - Adapted to CBM experiment
 - Basis to discuss principle concept of cost categories and cost sharing during the operation phase
 - Cost taken over by host lab(s)
 - Cost per sub-system/detector
 - Common Collaboration cost
 - Presented and discussed at ECE/ECSG meeting in May 2025
 - Draft submitted to FAIR-RRB and concept presented at the FAIR-RRB meeting in July 2025
- To be further refined/edited
 - Harmonizing with respect to Construction MoU (CERN → FAIR)
 - Adapting to NUSTAR (worked together with CBM on draft but change text where needed)

Low-energy branch?

Low-energy branch

- -needs infrastructure
- -serves:

Super-FRS EC, HISPEC/DESPEC, MATS, LASPEC

-physics workshop:1 October 2025

Summary and conclusions

FAIR Phase-0 is productive and assures readiness for Early and First Science

NUSTAR ES&FS experiments will mark the start of FAIR Highest priority

Optimisation of the FAIR injector chain already for Early Science in parallel to FAIR construction (beam intensities!)

Vision for the completion of Super FRS low-energy branch (FS++)

NUSTAR Annual Meeting GSI 23-27 Feb. 2026

