Status of S505 Experiment:

Investigation of the beta strength crossing N=126 and the formation of the third r-process abundance peak

Spokepersons: J.L. Tain, A.I. Morales, E. Nacher PhD Thesis: D. Rodriguez

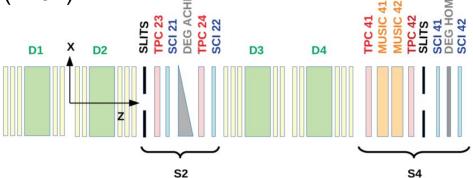
79

78

Goal: Measurement of the β -strength in the full Q $_{\beta}$ window of 203,204 Pt, 204,205,206 Au, 207 Hg decay for comparison with state-of-the-art theoretical models

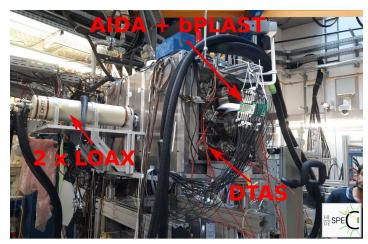
203Hg	204Hg	205Hg	206Hg	207Hg
5/2-	0+	(1/2-)	0+	(9/2+)
46.6d	STABLE	5.14(9)m	8.32(7)m	2.9(2)m
0.492MeV		1.533MeV	1.308MeV	4.55MeV
	203Au	204Au	205Au	206Au
	3/2+	(2-)	(3/2+),(11/2-)	(5,6+)
	60(6)s	39.8(9)s	32.0(14)s,6(2)s	40(15)s
	2.126MeV	4.04MeV	3.52MeV,+0.9	6.7MeV
	202Pt	203Pt	204Pt	
	0+	(1/2-),(13/2+)	0+	
	44(15)h	22(4)s,12(5)s	10.3(13)s	
	1 66MeV	3 52MeV + X	2 73MeV	

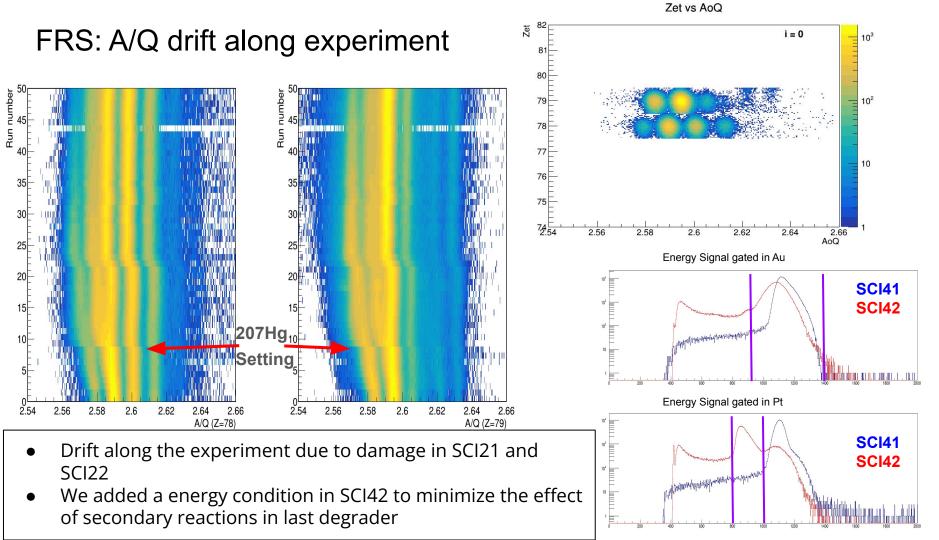
127

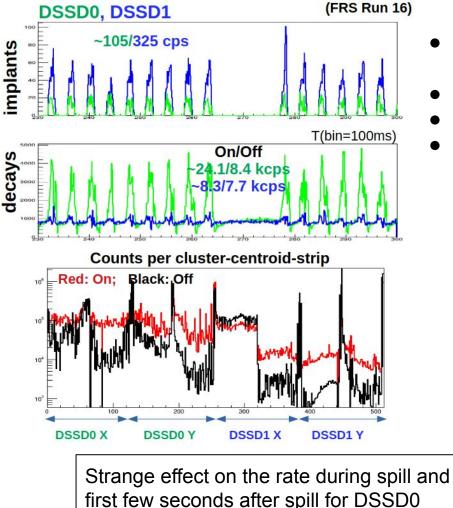


Performed: June 21-28, 2022

Beam/Target: ≤4.5x10⁸ ppb (1.6s/2.2s), 1GeV/u ²⁰⁸Pb on 1.6 g/cm² Be

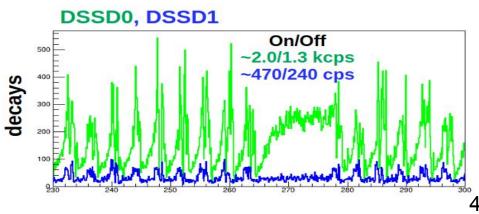

FRS Settings: ²⁰⁴Pt(~125h), ²⁰⁷Hg (~15h)

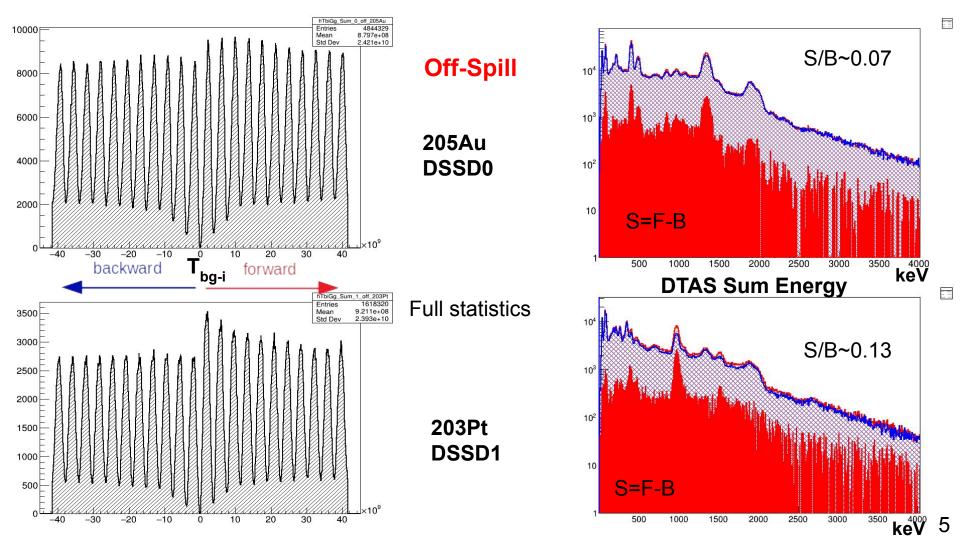

FRS setup: (TPC23-24 only for calibration)

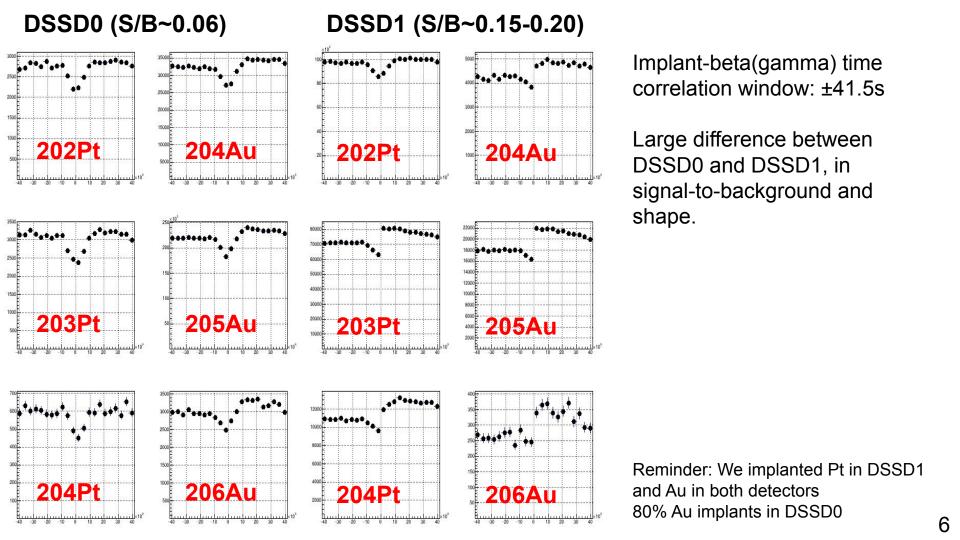


S4 setup:

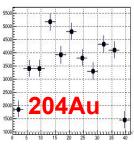
- DTAS (16xNal(Tl) det.)
- AIDA (2xDSSSDs-80mmx80mm)
- 2xbPast detectors (not used)
- 2xLOAX HPGe (1 not operational)

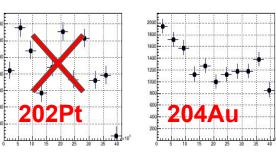




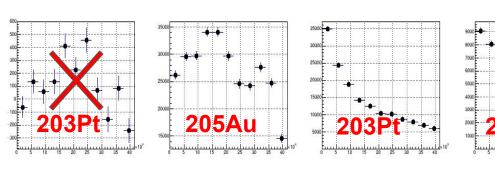


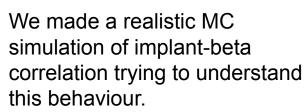
- Huge rate in decay branch, in particular for DSSD0 during spill
- Large noise on most FEE64s
- Noisy strips can be identified
- Large number of strips firing in one decay event


- 1. Increase threshold (currently 150keV)
- 2. Limit event strip multiplicity (nx,ny<6)
- 3. Only analyze off-spill data
- γ-gating



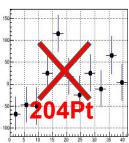
DSSD0 (S/B~0.06)

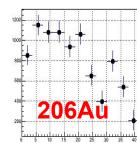


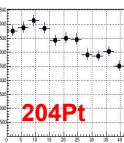

DSSD1 (S/B~0.15-0.20)

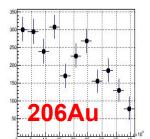
Difference forward - backward in the time correlation implant-beta(gamma).

Strange behaviour in DSSD0 DSSD1 has a better shape

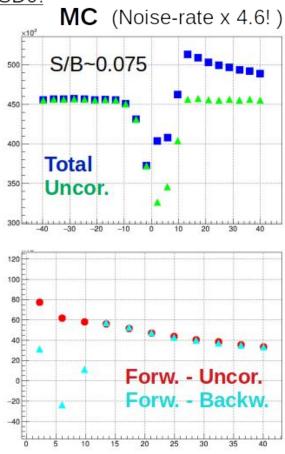


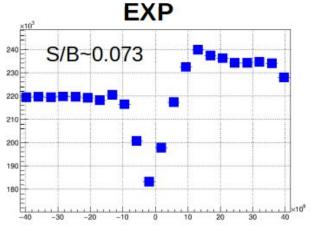


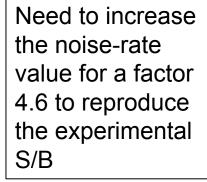

Experimental information used in the simulation: Spill sequence (1.6s/2.2s), 18 delivered, 3 not delivered. Implants: time distribution, experimental efficiency and rate XY distribution.

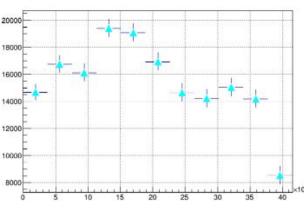

Decay: sequence to stability, experimental beta-gamma efficiency, dead-time and XY distribution.

Noise: rate variation over time and XY distribution.

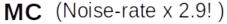


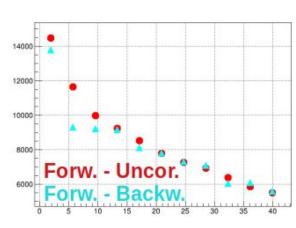

Reminder:

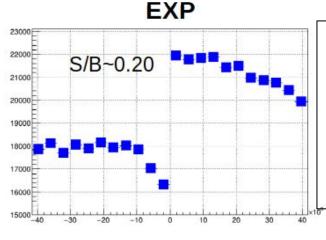

We implanted Pt in DSSD1 and Au in both detectors. $T_{1/2}$ 202Pt = 45(15)h 80% Au implants in DSSD0


205Au case (10% 205mAu)

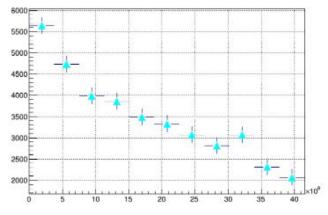
DSSD0:

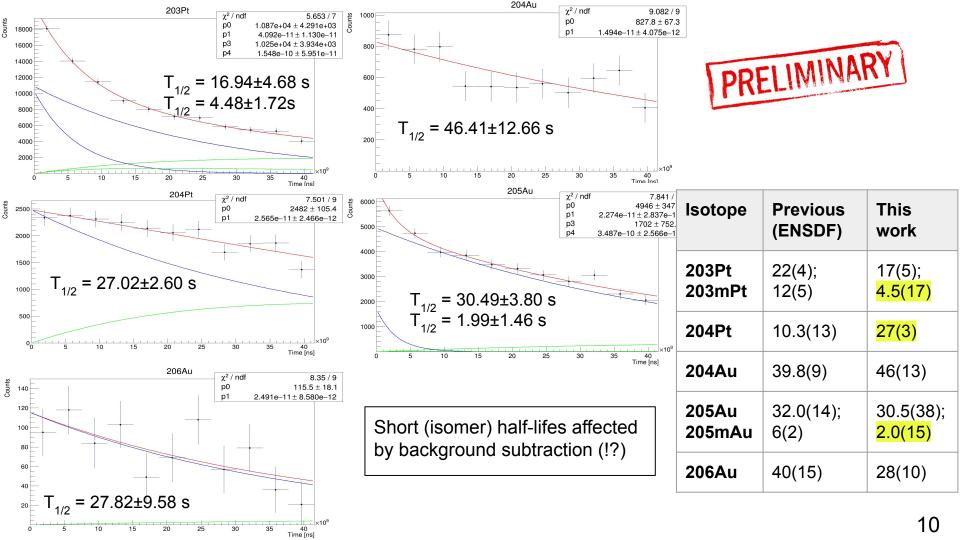




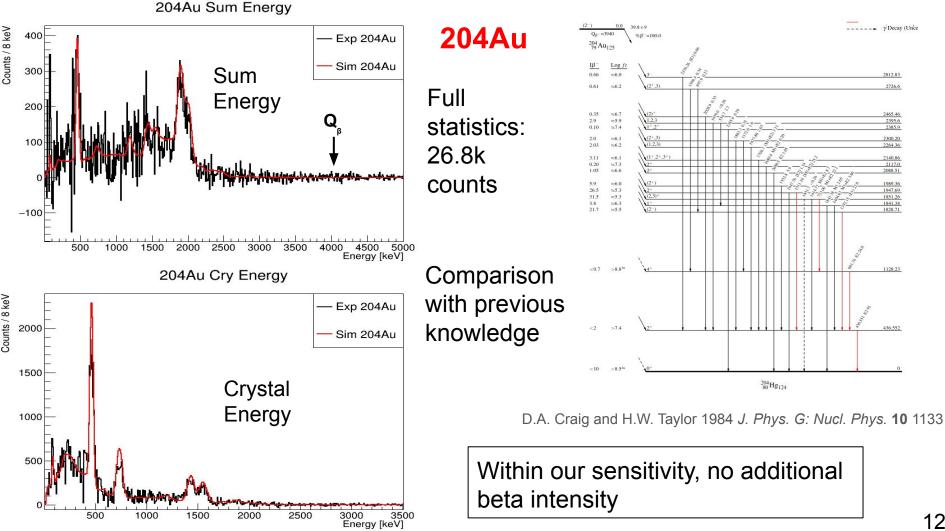

205Au case (10% 205mAu)

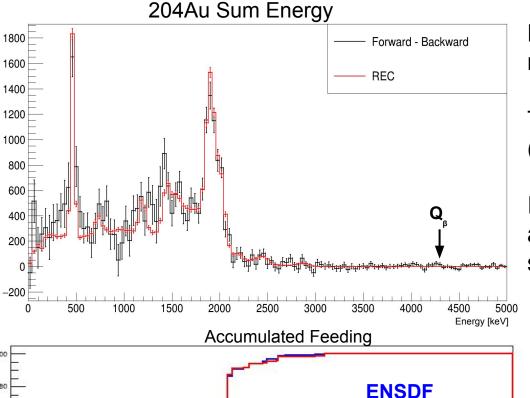
DSSD1:





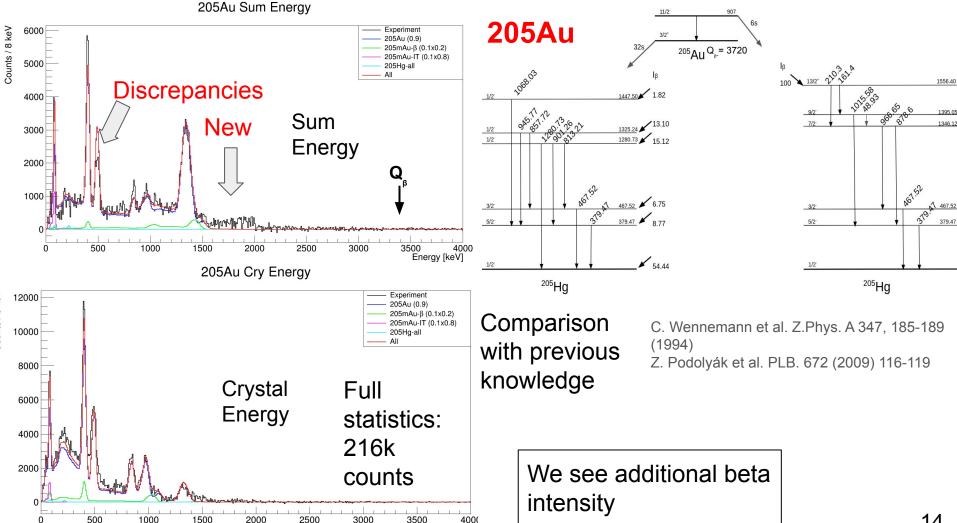
Need to increase the noise-rate value for a factor 2.9 to reproduce the experimental S/B



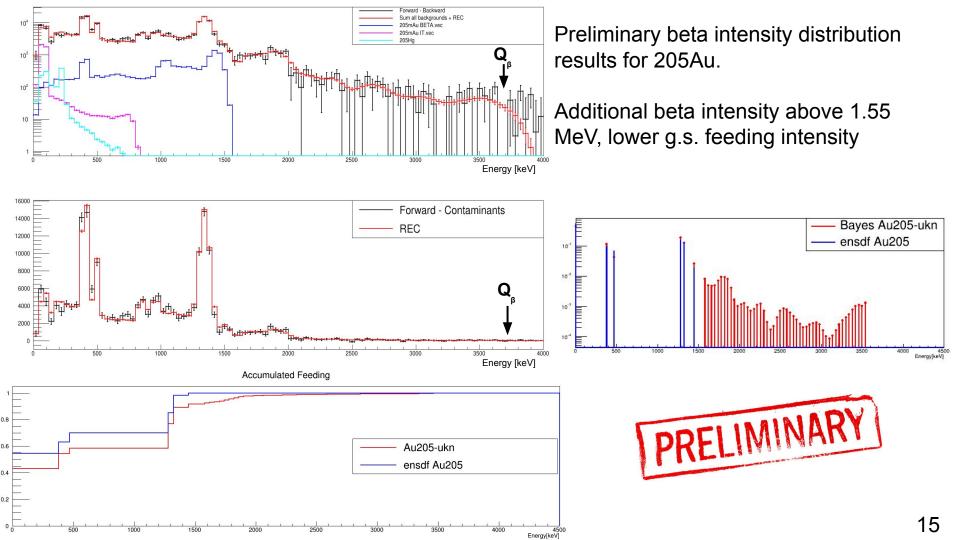

Next we show the fits of half-lifes with DSDD1

MC simulation: 205Au (no isom.) MC simulation: 205Au (10% isom.) **Important** 18-of-21 spills 21-of-21 spills remark **D**eformation of 65000 uncorrelated 460 BBBBBBBBBBB **background** due 60000 to 3 missing spills 55000 50000 45000 360 DSSD0 8000 The true correlated distribution is 6000 deformed due to 3 5000 missing spills 4000 3000 2000

Preliminary analysis of beta intensity distribution of ²⁰⁴Au and ²⁰⁵Au

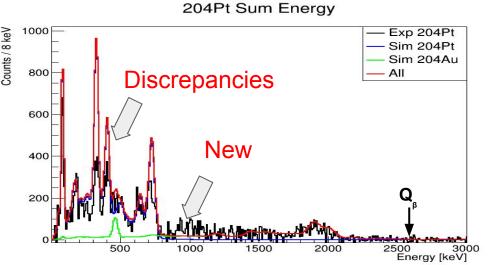

This work

Preliminary beta intensity distribution results for 204Au.


The feeding to g.s. fixed to 0 (Craig et al.)

In good agreement with Craig et al., but some feeding to first and second excited states

Energy [keV]



1500

500

1000

2000

2500

3000

3500 400 Energy [keV]

Next steps:

- Analysis to obtain beta intensity distribution of 203-204Pt
- Analysis of 206Au: complicated because of 2us isomer in 206Hg

S505 Collaboration:

D.Rodriguez-Garcia^{1,*}, J. L.Tain¹, A. I.Morales¹, G.Aggez^{2,3}, J.Agramunt¹, M.Alaqeel^{4,5}, B.Alayed^{5,6}, H. M.Albers², G.Alcala¹, A.Algora¹, A.Alharbi⁵, S.Alhomaidhi^{2,7}, F.Amjad², T.Arici², M.Armstrong⁸, M.Bajzek², A.Banerjee², G.Bartram², G.Benzoni⁹, Z.Chen², B.Das², T.Davinson¹⁰, T.Dickel², I.Dillmann¹¹, C.Domingo-Pardo¹, H.Ekawa¹², Z.Ge², W.Gelletly¹³, J.Gerl², M.Gorska², E.Haettner², O.Hall¹⁰, P.Herrmann², C.Hornung², N.Hubbard^{2,7}, C.Jones², E.Kazantseva², R.Knoebel², I.Kojouharov², G.Kosir²¹, D.Kostyleva², T.Kurtukian-Nieto¹⁵, N.Kurz², M.Labiche¹⁶, A.Mccarter⁵, M.Mikolajczuk², A. K.Mistry^{2,7}, I.Mukha², E.Nacher¹, M.Nakagawa¹², B.S.Nara-Singh²⁰, S.Nishimura¹², S. E. A. Orrigo¹, P.Papadakis¹³, S.Pietri², W.Plass², Z.Podolyak¹³, M.Polettini^{9,17}, R.Prajapat^{2,18}, E.Rocco², B.Rubio¹, E.Sahin^{2,7}, M.Satrazani⁵, H.Schaffner², C.Scheidenberger², A.Sharma¹⁹, Y.K.Tanaka¹², A.Tolosa-Delgado²¹, M.Vencelj¹⁴, J.Vesic¹⁴, P.Vi¹², J. A.Victoria¹, H.Weick², K.Wimmer², H. J.Wollersheim², A.Yaneva^{2,8}, and J.Zhao^{2,22}

Thank you very much for your attention

Thanks to:

PID2019-104714GB-C21, PID2022-138297NB-C21,

PROMETEO/2019/007, CIPROM/2022/9, CISEJI/2022/25

¹Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, E-46980 Paterna, Spain

²GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany

³Institute of Graduate Studies in Sciences, Istanbul University, 34452 Istanbul, Turkey

⁴Physics Department, Imam Mohammad Ibn Saud Islamic University (IMISU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia

⁵Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK

⁶Department of Physics, ArRass College of Sciences and Art, Qassim University, Saudi Arabia

 $^{^7}$ Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany

⁸IKP, University of Cologne, D-50937 Cologne, Germany

⁹INFN Sezione di Milano, I-20133 Milano, Italy

¹⁰School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK

¹¹TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada

¹²RIKEN Cluster for Pioneering Research, RIKEN, Saitama 351-0198 Japan

¹³Department of Physics, University of Surrey, Guildford, GU2 7XH, UK

¹⁴Faculty of mathematics and physics of the University of Ljubljana, SI-1000 Ljubljana, Slovenia

¹⁵Instituto de Estructura de la Materia, CSIC, E-28006, Madrid, Spain

¹⁶Science and Technology Facilities Council, Daresbury Laboratory, Daresbury, WA4 4AD, UK

¹⁷Dipartimento di Fisica, Università degli Studi di Milano - Milano, Italy

¹⁸Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India

¹⁹Department of Physics, Indian Institute of Technology Ropar, Rupnagar - 140001, India

²⁰Paisley, University of the West of Scotland, High St, Paisley PA1 2BE, UK

²¹Faculty of Mathematics and Science, University of Jyväskylä, FI-40014Jyväskylä, Finlandia

²²School of Physics, Peking University, Beijing 100871, China