

Development of a Geant4 simulation of the DESPEC setup

Daniele Brugnara
Giorgio Bruni Campanella
Johan Emil Linnestad Larsson

Motivation

- To have a coherent simulation that includes both AIDA and DEGAS/FATIMA
- The main drivers are:
 - The need to account for gamma-ray absorption at low energies to evaluate the response of the setup (necessary to extract branching ratios, intensities)
 - The need to investigate the beta tagging efficiency and expected correlation of AIDA
 - Identify the best analysis strategies for AIDA
 - To understand issues of the setup and drive future developments

Public repository

- Hosted on the GSI Gitlab and publicly available
- It is still in a preliminary phase and is currently being tested/verified
- The idea is to have a code that is easy to access and simple to use

Code ~

DARMSTADT

TECHNISCHE

Project information

-0- 32 Commits

P 2 Branches

O Tags

□ 13.2 MiB Project Storage

README

+ Add LICENSE

+ Add CHANGELOG

+ Add CONTRIBUTING

+ Enable Auto DevOps

+ Add Kubernetes cluster

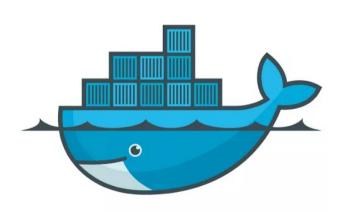
+ Set up CI/CD

+ Add Wiki

+ Configure Integrations

Created on

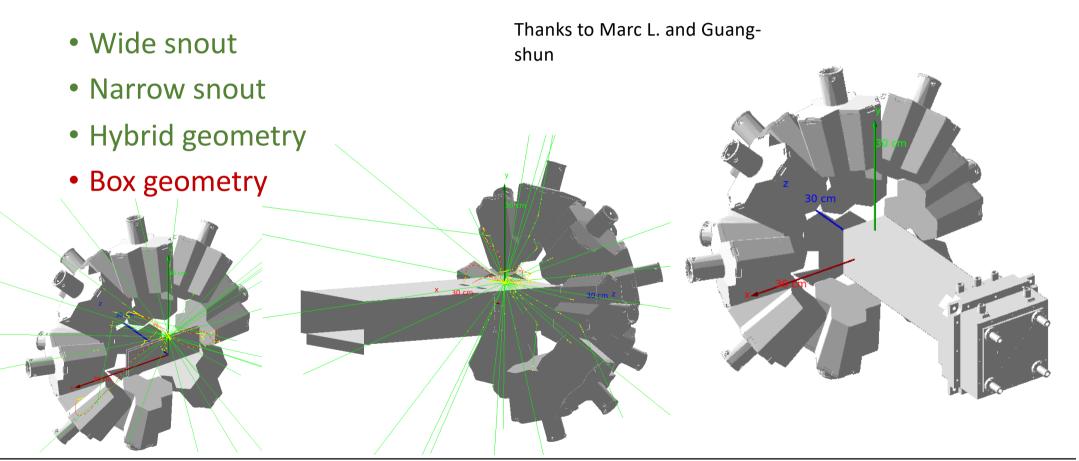
August 21, 2025



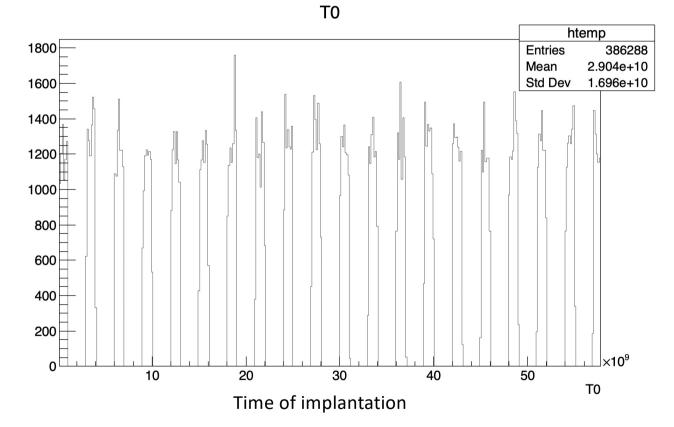
- Requires to compile Geant4 with GDML support for the geometry
- A Dockerfile is also provided in order to take care of the dependencies automatically
- A singularity configuration has also been added to allow it to work on the Virgo cluster

Documentation

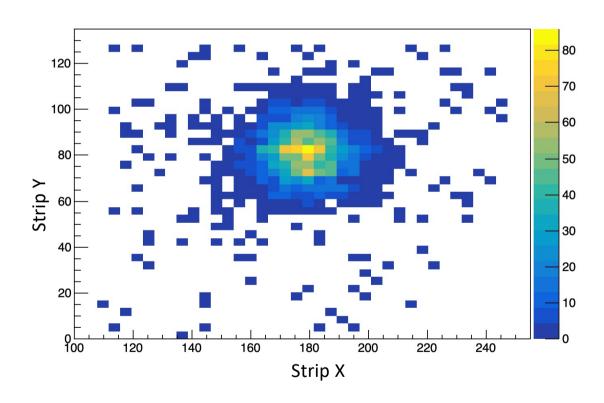
- The documentation is provided in a README.md and describes the installation procedure and how to run the code
- Since the simulation is still in its testing phase the documentation is still scarce
- We plan to provide complete instructions for external users that will be helpful also for proposals and other evaluations or response/efficiency



Available geometries



 Poissonian statistic for implantation with spill-on spill-off structure and a settable rate of implantation



 Position of implantation sampled from a gaussian distribution that can be set to reproduce the experimental data

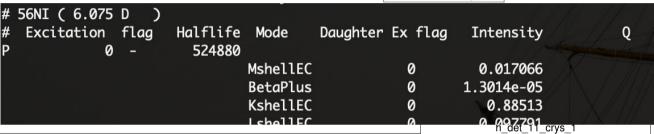
 The particle decay modes are configured by the typical Geant4 files and can be personalized

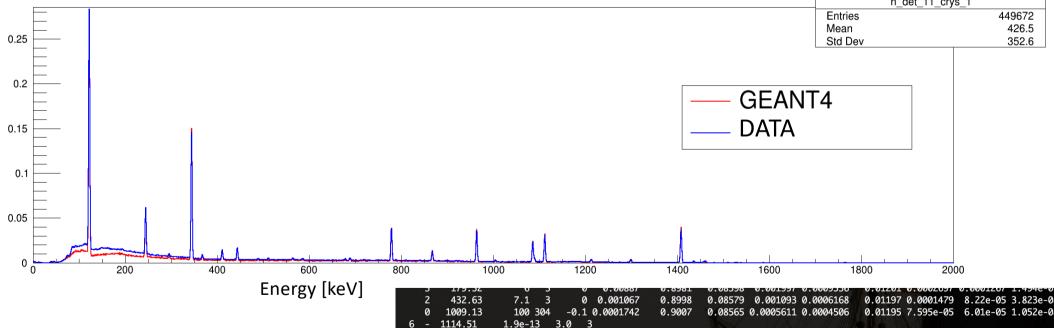
RadioactiveDecay:

#	56NI (6.075	D)						
#	Excitation	flag	Halflife	Mode	Daughter Ex f	lag	Intensity	15-1/Q-1
Р	0	_	524880					
				MshellEC	0		0.017066	
				BetaPlus	0		1.3014e-05	
				KshellEC	0		0.88513	
				LshellEC	0		0.097791	
. 73				MshellEC	0	-	3.6122e-07	2132.889
				MshellEC	158.38	-	7.8822e-06	1974.509
				MshellEC	970.23	-	0.012701	1162.659
				MshellEC	1450.68	-	0.0083189	682.209
	Ligit, Physical	1 1/2		MshelleC	1450.68	-	0.0083189	682.209

PhotoEvaporation:

		'								
0		0 6.	67319e+06 4.0	0						
1		158.38	1e-10 3.0	1						
	0	158.38	100 304 0.016	0.01253	0.8978	0.08602 0.00	2158 0.001025	0.01201 0.0002915	0.0001362 1	.805e-07
2		576.5	2.8e-13 5.0	1						
	0	576.5	100 304 -0.16	0.0005713	0.9001	0.08572 0.000	9048 0.0005908	0.01196 0.0001224	7.88e-05 2	.594e-08
3		829.61	1.7e-12 4.0	3						HILLIAN
	2	253.11	2 3 0	0.003781	0.8988	0.08594 0.00	1599 0.0008028	0.012 0.0002163	0.0001069 8	.835e-08
	1	671.23	100 304 -0.09	0.0004054	0.9002	0.08576 0.000	7846 0.0005214	0.01197 0.0001062	6.953e-05 1	.945e-08
	0	829.61	34 304 -0.43	0.0002725	0.9004	0.0856 0.000	7309 0.0006083	0.01194 9.892e-05	8.12e-05 1	.785e-08
4		970.23	1.2e-13 2.0	2						-70 m 1111
	1	811.85	100 304 -0.02	0.0002705	0.9005	0.08572 0.000	6676 0.0004761	0.01196 9.034e-05	6.351e-05 1	.439e-08
	0	970.23	0.3 4 0	0.0002343	0.9002	0.08524 0.000	8652 0.0009911	0.01188 0.0001171	0.0001323 2	.573e-08
5		1009.13	3.8e-13 5.0	3						
	3	179.52	6 3 0	0.00887	0.8981	0.08598 0.00	1997 0.0009536	0.01201 0.0002697	0.0001267 1	.494e-07
	2	432.63	7.1 3 0	0.001067	0.8998	0.08579 0.00	1093 0.0006168	0.01197 0.0001479	8.22e-05 3	.823e-08
	0	1009.13	100 304 -0.1	0.0001742	0.9007	0.08565 0.000	5611 0.0004506	0.01195 7.595e-05	6.01e-05 1	.052e-08
6		1114.51	1.9e-13 3.0	3						





 The particle decay modes are

RadioactiveDecay:

Configuration macro

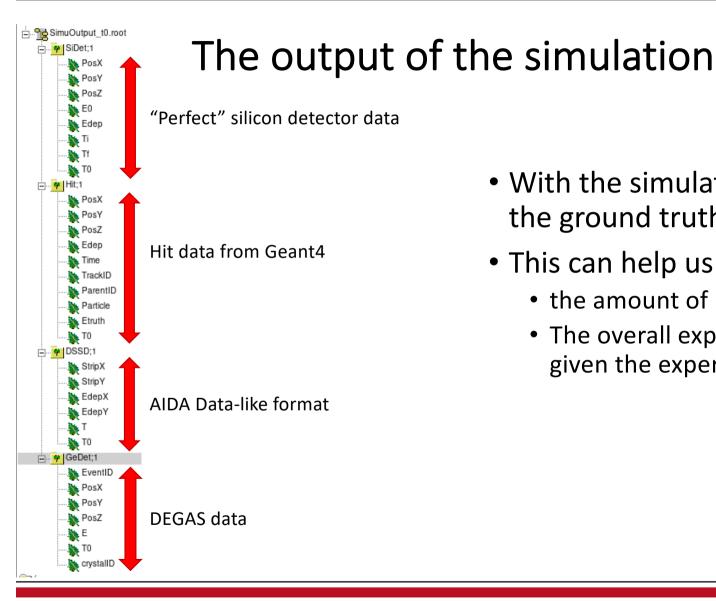
The geometry can be configured in the macro and allows to disregards the HPGe or the silicon detectors

/geometry/widesnout false /geometry/widesnoutshift -20 mm /geometry/narrowsnout false /geometry/germanium true /geometry/silicon false

```
/ge/enableSmear true
                        # keV
/ge/smearp0 0.000
/ge/smearp1 0.000
                      # dimensionless
/ge/smearp2 0.000
                      # dimensionless
/ge/edepThreshold 10 keV
/ge/timeThreshold 500 ns
/ge/writeoutput true
/si/edepThreshold 150 keV
/si/timeThreshold 20 us
/si/nstripsX 358
/si/nstripsY 128
/si/pitchX 0.56 mm
/si/pitchY 0.56 mm
/si/writeoutput false
```

The parameters that merge the Geant4 hits to make them analogous to the data can also be configured. Relevant parameters are:

- The parametrization of the energy resolution of DEGAS
- The time window to merge different hits
- The number of strips of the silicon detector

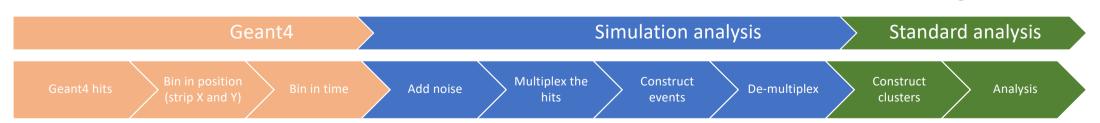


The event generation allows to:

- Set the spill-on spill-off structure and the rates
- Set the ion that will be implanted
- Set the distribution of implantation
- Use the standard GPS event generation

```
#these are all meaningless if /primary/usegps is true
/primary/spillOn 1 s
/primary/spillOff 0 s
/primary/implantRate 10 Hz
#this needs to be used for an eu source otherwise geant4 dr
/process/had/rdm/thresholdForVeryLongDecayTime 1.0e+60 year
/primary/ionZ 56
/primary/ionA 133
/primary/pos/mean 0 0 0 mm
/primary/pos/sigma 0.1 0.1 0.1 mm
#/primary/usegps true
#/gps/particle gamma
#/gps/ene/mono 1 MeV
#/gps/ang/type iso
#/gps/time 0 s
#/gps/pos/centre 0 0 0 mm
```


- With the simulation we can have access to the ground truth and a data-like format
- This can help us to understand:
 - the amount of miss-correlation
 - The overall expected efficiency of the setup given the experimental conditions



AIDA simulation

- The electronics of AIDA is complicated, as its data is multiplexed. In order to simulate properly and understand its response we need to simulate properly the multiplexing and de-multiplexing.
- We can add noise and study the impact on the data quality
- We can define the best strategy for the analysis

See Giorgio's talk!

- In our decay spectroscopy experiment we populate isomers and observe the decay of all the states that branch from the isomer
- The intensity of each gamma ray in a lecel scheme should "balanced"
- Having under control the intensity means, for example, that we can infer the presence of unobserved branching if there is missing intensity
- There are however some technicalities:
 - The implantation position does not correspond to the

See Johan Emil's talk!

HIS resolution (self) the DE SPE

Perspectives

- The most important step is now to validate the simulation with real data
- We also need to implement the box configuration
- Do we also need to simulate the implantation?
- Add the presence Dead layer/passivation in the silicon detectors
- Data structure compatible to experimental data in order to have a 1:1 correspondence of the analysis procedure

Thanks