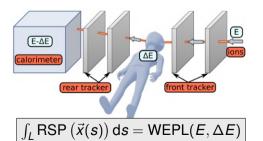


IonCT system based on LGAD sensors

Silicon@GSI: Kick-off event, Darmstadt, Germany 31st January 2025

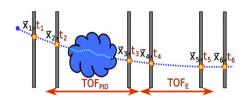
Felix Ulrich-Pur on behalf of the GSI LGAD group and the ion CT group of HEPHY and TU WIEN

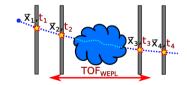

Ion computed tomography (iCT)

- ion computed tomography allows determining the relative stopping power (RSP) distribution inside a patient directly
 - improves treatment planning accuracy
 - requires tracking and energy measurement

- several prototypes have been developed (Johnson 2018)
- still no clinical system exists so far
- meeting all clinical requirements at once is challenging
 - RSP accuracy < 1 %
 - energy resolution < 1 %</p>
 - DAQ rate $> 10^6 10^7 \text{ Hz}$
- 4D-tracking detectors would offer perfect solution (Ulrich-Pur et al. 2022)
 - 4D-tracking iCT system
 - incorporate time-of-flight (TOF) measurements into imaging process

LGAD-based TOF-iCT system - overview

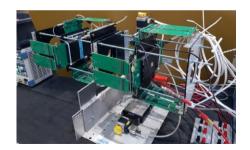


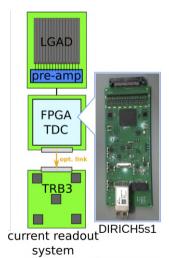

LGAD-based TOF-iCT system

- requires 6 4D-tracking layers
- TOF in air for residual energy determination (Ulrich-Pur et al. 2022)
- TOF through object + energy loss for PID (Rovituso et al. 2017)

second approach: "sandwich" TOF-iCT

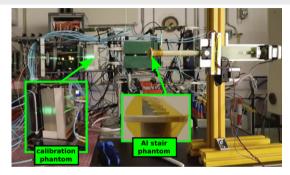
- indirect WEPL measurement via TOF through object (Ulrich-Pur et al. 2023)
- no need for residual energy detector
- requires only 4 4D-tracking layers

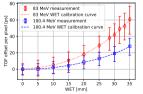

TOF-iCT demonstrator - first setup

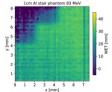


- TOF-iCT demonstrator at GSI
 - four 1 × 1 cm² FBK LGAD strip sensors (100 µm pitch)
 - discrete front-end electronics
 - FPGA-based TDCs with leading-edge discriminator
 - 4x DIRICH5s1 (32 channels per DiRICH)
 - imaging of small objects $\mathcal{O}(< 1 \text{ cm}^2)$

TOF-iCT demonstrator - first experiments

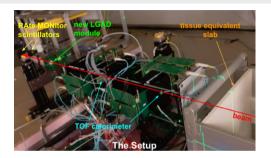


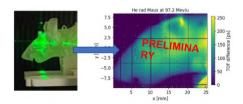




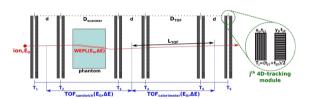
- first experimental TOF-based proton radiography (TOF-pRad) (Ulrich-Pur et al. 2024)
 - 10⁵ p/s protons with 83 and 100.4 MeV
 - 1.6 mm PMMA slabs for WEPL calibration
 - Sandwich TOF-pRad of Al stair phantom was recorded

TOF-iCT demonstrator - first experiments

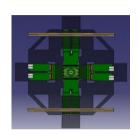


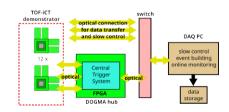


- first experimental TOF-based He radiography (TOF-HeRad)
 - now TOF calorimeter instead of sandwich TOF
 - SP measurements of bone and plastic water with p and He ions
 - TOF-HeRad of a plastic mouse head
 - required image stitching

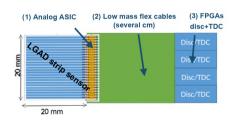


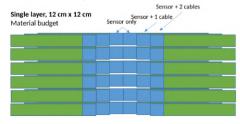
TOF-iCT demonstrator - current upgrade





- small, but full TOF-iCT system
 - 12 single-sided LGAD strip sensors with upgraded front-end-electronics
 - DOGMA readout system with optical data transfer
- full ion CT of a live mouse is planned


Future large-area 4D-tracking system



- novel LGAD sensors with increased fill factor will be investigated
 - new sensor production with trench-isolated LGADs planned
- upgraded readout electronics with increased number of readout channels
 - dedicated ASIC and FPGA-based TDCs
- dedicated low-mass module design for large active areas (tens of cm²)
 - low mass flex cables to reduce overall material budget (X/X₀ < 1 %)</p>

Summary and outlook

- LGADs are promising 4D-tracking detectors with many applications
 - well-suited for ion imaging
- two possible scanner concepts
 - "standard" TOF-iCT system with TOF calorimeter
 - sandwich TOF-iCT system without a residual energy detector
- TOF-iCT demonstrator system
 - demonstrator system based on LGAD strip sensors was built and tested
 - first sandwich TOF-pRad of an aluminium stair phantom and first TOF-HeRad of a plastic mouse was successfully recorded at MedAustron to show proof-of-principle
 - further measurements with upgraded demonstrator system planned
- long-term goal: large-area 4D-tracking system

Acknowledgements

Thank you for your attention!

TU WIEN/HEPHY

- Thomas Bergauer
- Andreas Gsponer
- Albert Hirtl
- Matthias Kausel (MedAustron)
- Daniel Makay
- Stephan Kwas

GSI

- Tetyana Galatyuk
- Mladen Kis
- Vadym Kedych
- Yevhen Kozymka
- Wilhelm Krüger
- Sergey Linev

- Jan Michel
- Jerzy Pietraszko
- Christian Joachim Schmidt
- Michael Träger
- Michael Traxler

FBK

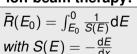
CREATIS

This research was funded in part by the Austrian Science Fund (FWF) Erwin-Schrödinger Grant Nr. J 4762-N, GSI-TU Darmstadt F&E, DFG GRK 2128. The financial support of the Austrian Ministry of Education, Science, and Research is gratefully acknowledged for providing beam time and research infrastructure at MedAustron

Backup slides

GSI GmbH Felix Ulrich-Pur 31.01.2025 11/20

Motivation – ion beam therapy


Advantages of ion beam therapy

- energy deposition (dose) of ions strongly localised $(S \propto \frac{1}{\nu^2})$
 - relatively low entrance dose and rapid distal dose fall-off (Bragg peak)
 - accurate dose deposition
 - allows treatment of tumors close to critical organs, e.g. optical nerve

ion-beam therapy:

photon therapy:

$$I = I_0 e^{-\mu X}$$

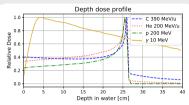
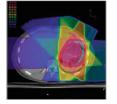



Figure: Bragg peak

photon therapy: proton therapy:

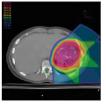


Figure: treatment plans (Linz 2016)

Motivation - treatment planning

Treatment planning based on x-ray CT

 conversion errors from Hounsfield units (HU) to relative stopping power (RSP) lead to range errors (Schaffner et al. 1998)

$$HU = 1000 * rac{\mu - \mu_{ ext{water}}}{\mu_{ ext{water}}}$$
 \Downarrow
 $RSP = rac{S(E)}{S(E)_{ ext{water}}}$

- solution: direct measurement of stopping power using ions in plateau region
 - ion computed tomography (iCT)

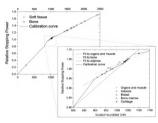


Figure: HU→RSP conversion (Schaffner et al. 1998)

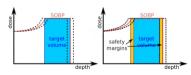
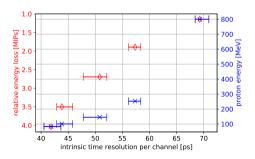
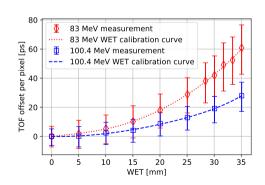


Figure: range uncertainties

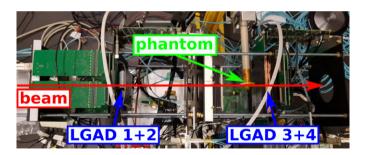

TOF-iCT demonstrator - sensor performance

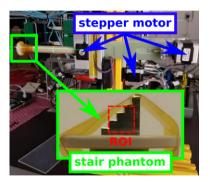
- time-walk and offset correction was performed for each LGAD channel
 - synchronisation of all LGAD channels in each 4D-tracking layer
- intrinsic time resolution was measured for different beam energies
 - energies between 83 and 800 MeV
 - time resolution improves with lower beam energy
 - higher signal-to-noise ratio in detector at lower beam energies
 - median time resolution per channel between 42 ps (4.03 MIPs) and 68 ps (1.14 MIP)

TOF-iCT demonstrator - WET calibration

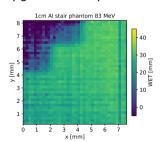


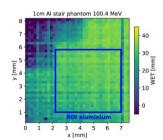
- TOF per pixel was measured for different PMMA absorber thicknesses at two different beam energies
- 5th-order polynomial was used to fit the increase in TOF to the corresponding WET


TOF-iCT demonstrator - pRad

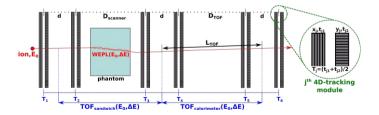


- Al stair phantom was mounted on rotational table
 - due to alignment and size of sensors, only part of phantom could be imaged (ROI)
- pRads were recorded at 83 and 100.4 MeV


TOF-iCT demonstrator - pRad

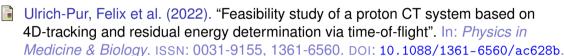


- increase in TOF was measured in $0.2 \times 0.2 \,\text{mm}^2$ pixels projected onto the last two LGAD planes (i.e. 2×2 LGAD strips per pixel)
 - WET calibration was applied and WET was collected in centre of phantom (blue square)
- Al stair phantom still clearly visible
 - however, WET overestimated (measured WET: ≈ 29 mm, theory: ≈ 20.8 mm)
 - upgrade of setup and more tests will follow


TOF-iCT demonstrator - next steps

- current setup consists of only 2 4D-tracking layers
 - allows only straight-line approximation
- upgrade of current setup with more layers planned (Erwin-Schrödinger grant)
 - main goal: record first TOF-based iCT
 - additional 4D-tracking layers will allow implementation of MLP
 - more experimental data for TOF through matter will be recorded to further test and improve sandwich TOF-iCT models

References I


- Johnson, Robert P (Jan. 2018). "Review of medical radiography and tomography with proton beams". en. In: *Reports on Progress in Physics* 81.1, p. 016701. ISSN: 0034-4885, 1361-6633, DOI: 10.1088/1361-6633/aa8b1d.
- Linz, U. (2016). Ion Beam Therapy: Fundamentals, Technology, Clinical Applications. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG.
- Rovituso, M et al. (2017). "Fragmentation of 120 and 200 MeV u-14He ions in water and PMMA targets". In: *PMB* 62.4, pp. 1310–1326. DOI: 10.1088/1361-6560/aa5302.
- Schaffner, B et al. (1998). "The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between CT-HU and proton stopping power". In: *Physics in Medicine and Biology* 43.6, pp. 1579–1592. DOI: 10.1088/0031-9155/43/6/016.
- Ulrich-Pur, F. et al. (2023). "Novel ion imaging concept based on time-of-flight measurements with low gain avalanche detectors". In: *Journal of Instrumentation* 18.02, p. C02062. DOI: 10.1088/1748-0221/18/02/C02062.

References II

Ulrich-Pur, Felix et al. (2024). "First experimental time-of-flight-based proton radiography using low gain avalanche diodes". In: *Physics in Medicine and Biology* 69.7, p. 075031, DOI: 10.1088/1361-6560/ad3326.