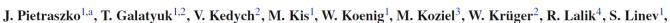


LGAD activities at GSI

Jerzy Pietraszko for the GSI LGAD team

Jan. 31, 2025


Gain layer

LGAD Technology in HADES

Low Gain Avalanche Detectors (LGAD) technology

(proposed and manufactured by National Center for Micro-electronics, Barcelona)

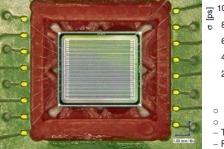
- Thin gain layer exhibits electric fields (>300 kV/cm)
 - Leads to intrinsic signal amplification
 - Signals with short rise times (<1ns)
- Simultaneous position (<30μm) and time measurement (<50ps), thickness < 200μm

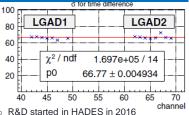
J. Michel³, S. Moneta⁵, A. Rost², A. Schemm⁶, C. J. Schmidt¹, K. Sumara⁴, M. Träger¹, M. Traxler¹, Ch. Wendisch¹

- ¹ GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- ² Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ³ Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany
- ⁴ Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland
- ⁵ Università di Pisa, 56126 Pisa, Italy
- ⁶ IMT Atlantique, Campus de Nantes, 44307 Nantes, France

Helmholtz Innovation Pool (MU / MT)

Assosiated partner (w/o funds) of





HADES Prototype LGAD T0 sensor and performance

High field

- Excellent performance demonstrated in 2020
- Time precision below 50ps
- Rate capability MHz/channel
- Operation at room temperature

LGAD Technology in HADES

HADES LGAD Production in 2021

(Metal-Metal distance 14um, Gain-Gain distance 24um)

- 1. Sensor size: 20 mm x 20mm
 - 2 x 48 half strips (9.28mm long)
 - pitch about 387 um, Die size 19.9 x 19.9mm2
- 2. Sensor size 1cm x 1cm
 - 45 strips (about 9 mm long)
 - pitch about 192 um
- 3. Sensor size 1cm x 1cm
 - about 57 strips (about 9 mm long)
 - pitch 150 um
- 4. Sensor size 1cm x 1cm (fill factor: 75%)
 - about 86 strips (9 mm long)
 - pitch 100 um
- 5. Sensor size 1cm x 0.5 cm
 - about 73 strips (about 9 mm long)
 - pitch 50 um

Upcoming Production in 2025 at FBK

- 200μm/100μm/50μm
- Trench Isolation technology (fill factor: 96% for 100 μm pitch)
- Low material budget: 200μm → further thinning to 100μm possible

Assosiated partner (w/o funds) of

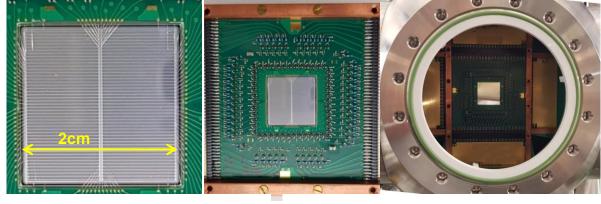
LGAD Technology in HADES

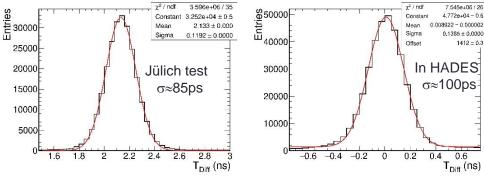
Achieved performance of the HADES TO detector

Running conditions at HADES

- p beam, 4.5 GeV
- beam intensity: 10⁸ p/s

Sensor size: 20 mm x 20mm


- 2 x 48 half strips (9.28mm long)
- pitch about 387 um,
- die size 19.9 x 19.9 mm²

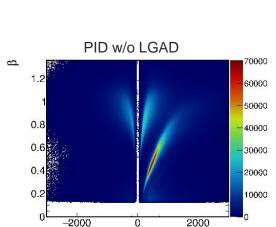

Sensor fill factor: 94 %

Strip capacitance: 10 pF → limited timing perf.

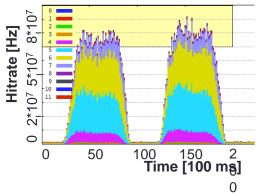
Passive cooling Timing performance:

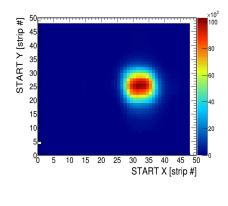
Jülich test at COSY in air: σ≈85ps In HADES in vacuum: σ≈100ps

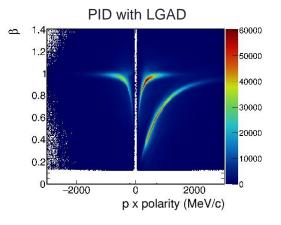
LGAD Technology in HADES


Performance of the HADES T0 detector

- p beam, 4.5 GeV
- beam intensity: 10⁸ p/s


Utilized for:


- Beam monitoring
- T0 determination
- Particle identification

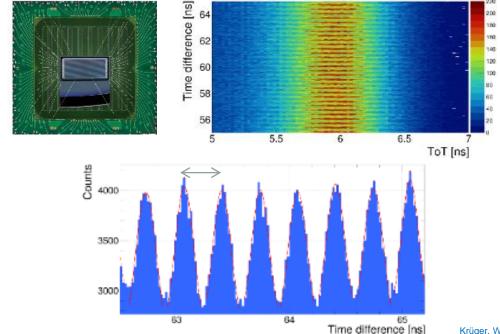


p x polarity (MeV/c)

Counts

Mean

Sigma



400

LGAD Technology in HADES and Other Applications

LGAD at S-DALINAC in Darmstadt

- Beam monitoring (time structure) in the energy recovery mode
- o 3/6 GHz bunch time structure in the normal/ER modes

Article Realization of a multi-turn energy recovery accelerator Received: 28 March 2022 Accepted: 26 October 2022 Published online: 26 January 2023 Accepted: 27 January 2023 Accepted: 27 January 2023 Accepted: 27 January 2023 Accepted: 28 January 2023 Acce

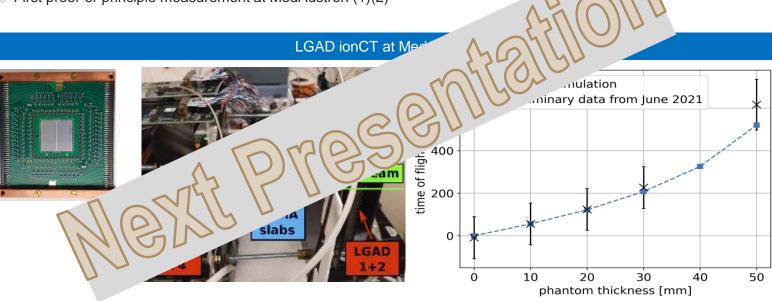
 (333.4 ± 0.4) ps

 (3.357 ± 0.409) ps

200

Time difference between two peaks [ps]

Krüger, W. et al. NIM A 1039 (2022) 167046, LGAD technology for HADES, accelerator and medical applications .


G 55 1

LGAD Technology in HADES and Other Applications

Medical Applications – Ion Imaging

- (1) Ulrich-Pur, Felix et al. (Mar. 2022) Physics in Medicine & Biology. ISSN: 0031-9155, 1361-6560
- (2) Krüger, W. et al. NIM A 1039 (2022) 167046, LGAD technology for HADES, accelerator and medical applications.

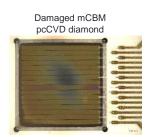
LGAD Technology for Sensor Diagnostics

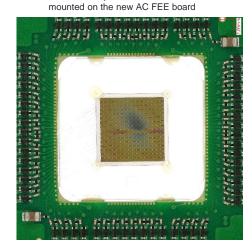
Heavy Ion induced radiation damage in pcCVD diamond

- o pcCVD diamond used in mCBM significant efficiency loss observed.
- Mitigation by adding additional amplification
- o Proof-of-principle measurement at MedAustron with He and C beams

Beam Telescope

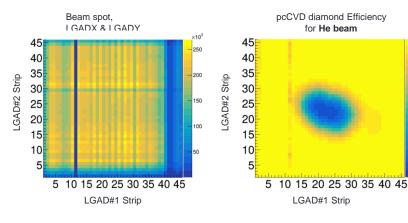
mCBM pcCVD diamond LGAD #2

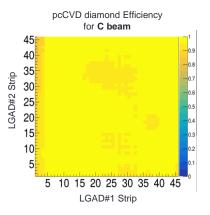

He/C beam direction



LGAD #1

mCBM pcCVD diamond


LGAD Technology for Sensor Diagnostics

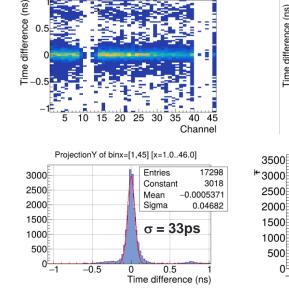

Heavy Ion induced radiation damage in pcCVD diamond – MedAustron results (Nov. 2024):

He beam, energy: 147.2 MeV/uC beam, energy: 402 MeV/u

o Au/C dE/dx ratio: Z²(Au) / Z²(C) ≈ 171

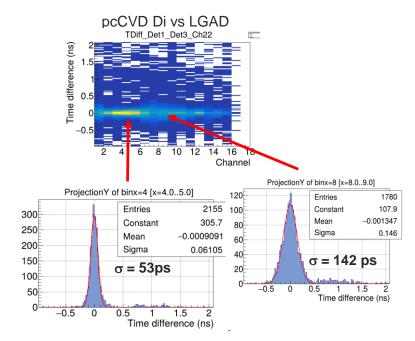
Additional amplification significantly extends the detector's lifetime.

LGAD Technology for Heavy Ions


LGAD Timing Properties measured with C Beam - MedAustron results (Nov. 2024):

o C beam, energy: 402 MeV/u

LGAD vs LGAD


TDiff Det2 Det3 Ch22

- Au/C dE/dx ratio: Z²(Au) / Z²(C) ≈ 171
- Additional amplification significantly extends the detector's lifetime and improves timing

LGAD vs LGAD

Thank you