
Flexible data transport for
online reconstruction

M. Al-Turany

Dennis Klein

A. Rybalchenko

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
1

This talk:

• Introduction

o Design requirement

o Zero MQ

o Socket Pattern

• Current Status

• Results

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
2

The Online Reconstruction and analysis

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
3

300 GB/s
20M Evt/s
300 GB/s
20M Evt/s

> 60 000
CPU-core

 or Equivalent
 GPU, FPGA, …

< 1 GB/s
25K Evt/s
< 1 GB/s

25K Evt/s

How to manage the data flow on such a huge cluster?
How to recover single/multiple processes?
How to monitor it?
……

Design constrains

• Highly flexible: different data paths should be modeled.

• Adaptive: Sub-system are continuously under development and

improvement

• Should work for simulated and real data: developing and debugging

the algorithms

• It should support all possible hardware where the algorithms could

run (CPU, GPU, FPGA)

• It has to scale to any size! With minimum or ideally no effort.

12/05/12

M. Al-Turany, Panda Collaboration
Meeting, Goa

4

Before Re-inventing the Wheel

• What is available on the market and in the community?

o ALICE, ATLAS, CMS, LHCb, …

o Financial and weather application have also huge data to deal with

• Do we intend to separate online and offline?

• Multithreaded concept or a message queue based one?

o Message based systems allow us to decouple producers from consumers.

o We can spread the work to be done over several processes and machines.

o We can manage/upgrade/move around programs (processes)

independently of each other.

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
5

ØMQ (ZeroMQ) Available since 2011

• A socket library that acts as a concurrency framework.

• Faster than TCP, for clustered products and supercomputing.

• Carries messages across inproc, IPC, TCP, and multicast.

• Connect N-to-N via fanout, pubsub, pipeline, request-reply.

• A synch I/O for scalable multicore message-passing apps.

• 30+ languages including C, C++, Java, .NET, Python.

• Most OSes including Linux, Windows, OS X, PPC405/PPC440.

• Large and active open source community.

• LGPL free software with full commercial support from iMatix.

12/05/12 6
M. Al-Turany, Panda Collaboration

Meeting, Goa

Zero in ØMQ

Originally the zero in ØMQ was meant as "zero broker" and (as close to) "zero

latency" (as possible). In the meantime it has come to cover different goals:

• zero administration,

• zero cost,

• zero waste.

More generally, "zero” refers to the culture of minimalism that permeates the

project.

Adding power by removing complexity rather than exposing new functionality.

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
7

ZeroMQ sockets provide efficient transport options

• Inter-thread

• Inter-process

• Inter-node

– which is really just inter-
process across nodes
communication

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
8

PMG : Pragmatic General Multicast (a reliable multicast protocol)
Named Pipe: Piece of random access memory (RAM) managed by
the operating system and exposed to programs through a file descriptor and
a named mount point in the file system. It behaves as a first in first out
(FIFO) buffer

PMG : Pragmatic General Multicast (a reliable multicast protocol)
Named Pipe: Piece of random access memory (RAM) managed by
the operating system and exposed to programs through a file descriptor and
a named mount point in the file system. It behaves as a first in first out
(FIFO) buffer

The built-in core ØMQ patterns are:

• Request-reply, which connects a set of clients to a set of services.

This is a remote procedure call and task distribution pattern.

• Publish-subscribe, which connects a set of publishers to a set of

subscribers. This is a data distribution pattern.

• Pipeline, which connects nodes in a fan-out / fan-in pattern that

can have multiple steps, and loops. This is a parallel task

distribution and collection pattern.

• Exclusive pair, which connect two sockets exclusively

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
9

Request-Reply Pattern

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
10

Socket type REQ REP

Compatible peer sockets REP, ROUTER REQ, DEALER

Direction Bidirectional Bidirectional

Send/receive pattern Send, Receive Send, Receive

Outgoing routing strategy Round-robin Last peer

Incoming routing strategy Last peer Fair-queued

Action in mute state Block Drop

Publish-Subscribe Pattern

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
11

Socket type PUB SUB

Compatible peer sockets SUB, XSUB PUB, XPUB

Direction Unidirectional Unidirectional

Send/receive pattern Send Only Receive only

Outgoing routing strategy Fan-out N/A

Incoming routing strategy N/A Fair-queued

Action in mute state Drop Drop

Pipeline Pattern

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
12

Socket type PUSH PULL

Compatible peer sockets PULL PUSH

Direction Unidirectional Unidirectional

Send/receive pattern Send Only Receive only

Outgoing routing strategy Round-Robin N/A

Incoming routing strategy N/A Fair-queued

Action in mute state Block Block

Example of sending
control commands

• A worker process can
manages two sockets (a
PULL socket getting tasks,
and a SUB socket getting
control commands)

• Could be very useful for
calibration and alignment
parameter

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
13

Data Transfer Framework as Extension to FairRoot!
Why?

• Modeling the pipeline processing within the online analysis

• Enable concurrency in FairRoot for offline analysis

• Reliable and efficient data transport through message queuing

technology

• The long term plan is to have the same framework for online and

offline

12/05/12

M. Al-Turany, Panda Collaboration
Meeting, Goa

14

Simulation

Simulation

Online Reconstruction and Analysis

Online Reconstruction and Analysis

Data flow example

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
15

Sampler 1 Sampler 1

Sampler 2 Sampler 2

Sampler 3 Sampler 3

Merger 1 Merger 1

Merger 2 Merger 2

Merger 3 Merger 3

Processor 1 Processor 1

Processor 2 Processor 2

Processor 3 Processor 3

Merger Merger

Experiment

Experiment

Sub-detector 1 Sub-detector 1

Sub-detector 2 Sub-detector 2

Sub-detector 3 Sub-detector 3

Current Status

• The Framework deliver some components which can be connected

to each other in order to construct a processing pipeline.

• All component share a common base called Device (ZeroMQ Class).

• All devices are grouped by three categories:

o Source: Sampler

o Message-based Processor:

• Sink, BalancedStandaloneSplitter, StandaloneMerger, Buffer

o Content-based Processor: Processor

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
16

Sampler

• Devices with no inputs
are categorized as sources

• During RUN state the
sampler loops infinitely
over the loaded events
and send them through
the output socket.

• A variable event rate
limiter has been
implemented to control
the sending speed

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
17

Message-based Processor

• All message-based
processors inherit from
Device and operate on
messages without
interpreting their
content.

• Four message-based
processors have been
implemented so far

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
18

Content-based Processor

• The Processor device has one input and one output
socket.

• A task is meant for accessing and potentially changing
the message content.

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
19

Design

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
20

Detector
specific code

Detector
specific code

New simple classes without ROOT are used in the
Sampler (This enable us to use non-ROOT clients) and
reduce the messages size.

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
21

Device

• Each processing stage of
a pipeline is occupied by
a process which
executes an instance of
the Device class

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
22

Message format (Protocol)

• Potentially any content-based processor or any source can change

the application protocol.

• The framework provides a generic Message class that works with

any arbitrary and continuous junk of memory.

• One has to pass a pointer to the memory buffer and the size in bytes,

and can optionally pass a function pointer to a destructor, which will

be called once the message object is discarded.

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
23

Test setup and results

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
24

• CPU: Intel Xeon L5506 @ 2.13 GHz

• Memory: 24 GiB, 6 4 GiB

• Network: Intel 82574L Gigabit Network Connection, speed=1Gbit/s

• Operating system GNU/Linux 3.2.32-1 x86_64, Debian 7.0

• ZeroMQ 3.2.0

• FairRoot PandaRoot oct12 release,

• Fairsoft development version from 18.12.2012

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
25

Four identical nodes were connected to a
GigabitEthernet switch for testing

The last two measured values at 10 MB and 100 MB message size appear
to be less efficient due to non-fractional output of the benchmark
program. The near to maximum throughput for these last two values has
been confirmed by monitoring the throughput with the linux tool iftop

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
26

ZeroMQ reaches
the upper TCP
throughput for
message sizes
larger than a
hundred bytes.

Results

• TCP throughput of 117.6MB/s was measured which is very close to

the theoretical limit of 117.7 MB/s for the

TCP/IPv4/GigabitEthernet stack.

• This was achieved using the Linux default values for the Ethernet

MTU (1500 B) and TCP buffer size (85.3 KB).

• The throughput for the named pipe transport between two devices

on one node has been measured around 1.7 GB/s

12/05/12

M. Al-Turany, Panda Collaboration
Meeting, Goa

27

Thanks!

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
28

Backup slides

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
29

Broker
 • Architecture of most messaging systems is distinctive by the

messaging server ("broker") in the middle.

• Every application is connected to the central broker.

• No application is speaking directly to the other application. All the

communication is passed through the broker.

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
30

Advantages

• Applications don't have to have any idea about location of other

applications. The only address they need is the network address of the

broker.

• Message sender and message receiver lifetimes don't have to overlap.

Sender application can push messages to the broker and terminate. The

messages will be available for the receiver application any time later.

• Broker model is to some extent resistant to the application failure. So, if

the application is buggy and prone to failure, the messages that are

already in the broker will be retained even if the application fails.

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
31

Drawbacks

• It requires excessive amount of network communication.

• The fact that all the messages have to be passed through the broker

can result in broker turning out to be the bottleneck of the whole

system.

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
32

Broker pattern
pipelined fashion

service-oriented architectures
(SOA)

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
33

Examples of No Broker model in ZeroMQ

No Broker Broker as a Directory Service

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
34

More Models
Distributed directory service

Distributed broker

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
35

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
36

PUB/SUB (publish/subscribe)

In most broker-based systems consumers subscribe for messages with

the broker, however, there's no way for broker to subscribe for

messages with the publisher. So, even if there is no consumer

interested in the message it is still passed from the publisher to the

broker, just to be dropped there

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
37

Messages should travel
only through those
lattices in the message
distribution tree that
lead to consumers
interested in the
message

Subscription Forwarding

12/05/12
M. Al-Turany, Panda Collaboration

Meeting, Goa
38

• XPUB is similar to a PUB socket, except that you can receive

messages from it. The messages you receive are the subscriptions

traveling upstream.

• XSUB is similar to SUB except that you subscribe by sending a

subscription message to it.

• Subscription messages are composed of a single byte, 0 for un-

subscription and 1 for subscription

