

Online Tracking Overview & Triplet Finder Status

Goa, 12.3.2013

Marius C. Mertens^{1,2} Sean Dobbs³, Jim Ritman¹, Peter Wintz¹

¹ Forschungszentrum Jülich
 ² Justus-Liebig-Universität Gießen
 ³ Northwestern University, Evanston

Outline

- Continuous Online Tracking Overview
- Online Manager Status (Sean Dobbs)
- Triplet Finder Status
- Key Topics for Future Investigations

PANDA Operating Conditions

- Gap estimate:
 - Barrier Bucket: 80% Filling
 - HESR length: 575 m
 - Antiproton velocity: c
 - Revolution time: 2000 ns
 - Gap: 400 ns
 - Fill/Gap ratio may vary
- Events per revolution \rightarrow Burst:
 - $2 \cdot 10^7 / \text{s} \cdot 2 \ \mu \text{s} = 40$

Continuous Online Tracking: Motivation/Concept

- Similar topology of signal and background
 → No simple criteria with high suppression potential
- Quasi-continuous high-rate operation of PANDA
 → Overlapping events, stateless pattern recognition started upon simple criteria may process redundant time windows
- Most channel selections require tracking information

Online Manager Status

- New/faster interface to simulation data implemented
- Fully operational for algorithm testing
 → Triplet Finder benchmarks
- Under construction:
 - Output to ROOT tree
 - Event reconstruction
- Release to public as soon as ROOT file output is implemented

Big thanks to Sean for his developments!

Triplet Finding in Axial Straws

 Find Triplets within pivot straws

→ Calculate center of mass around pivot straw and adjacent straws with hits

- Once two Triplets are found, calculate circle through origin
- Associate nearby hits with track candidate

Triplet Finder Status

- First quantitative test with 15 GeV/c DPM
 - Full burst processing: 2000 ns
 - Animated display in finer granularity: 5 ns
- Raw data results:

Total reconstructed track count: 100179 Reached MC ID: 5130 Reconstructable MC track count: 10679 MC Tracks reconstructed: 5993 Reco Status Good: 13790 Reco Status Bad: 86389 Secondary Tracks: 475

- Results:
 - > 50% reconstruction efficiency
 - Δφ: < 100 mrad
 - Δp_t: < 10% (below 450 MeV/c)

Hitstream Display: 15 GeV/c DPM, 50 ns Mean Time

Dual Parton Model (DPM): Standard pp background generator

Black circles: Early isochrone Blue circles: Early skewed isochrone Green circles: Close isochrone Red circles: Late isochrone Black dots: MVD hits Green dots: MVD hits r/z > 0.3 Black+Red dots: Triplets/Skewlets Yellow tracks: Vetoed Blue tracks: Accepted

DPM Benchmark: > 50% of primary tracks in the STT reconstructed by basic triplet finder

Triplet Finder Status

• t₀ constraining concept for Triplets and tracks:

Future Investigations: Fit/Finder Quality

- Association of hits to tracks \rightarrow Design questions
 - Ideal storage for these associations?
 - Desired parameters to store?
 - Override old values? Store list?
- Parameters for assigned hits/tracks:
 - Unassigned
 - Bad Hit Clutter, Noise, etc.
 - Low Quality veto value close to threshold
 - *Mid Quality*
 - *High Quality additional quality criterion passed*
 - *Multi Algorithm Confirmed Quality*

More (Online) Tracking Algorithms

Algorithm	Comments
Hough Transform, Yutie Liang	FPGA implementation
Hough Transform, Mohammad Al-Turany/Andreas Herten	GPU implementation
Non-Origin Trackfinder, Lia Lavezzi	Focused on offline, online application(?)
Triplet Finder, MCM	No isochrone info required
Track Segment Finder + Linker, Sean Dobbs	Template based
Fast Combinatorial Finder / Fitter, Sean Dobbs	Based on CLEO's SOLO
Forward Hough, Martin Galuska	Focused on offline, applicable for online
Riemann Tracker, Tobias Stockmanns	Focused on offline, online application(?)
Global Tracking in PandaRoot, Gianluigi Boca	Focused on offline
Neural networks pattern reco, Pablo Genova	Focused on offline, applicable for online
Rieman Tracker, Andreas Herten	GPU implementation

Other developments?

Marius C. Mertens

Summary/Outlook

- Online Manager: Implementation of canonical ROOT interface
- Quantitative Triplet Finder benchmark (DPM):
 - > 50% reconstructed tracks

Thank you for your attention

- Characteristics need to be investigated
- Triplet Finder adaptions
- Additional algorithms for reconstruction
- Triplet finder resolution:
 - Enough for certain selections?
 - Other algorithms with higher resolution at momenta > 450 Mev/c?