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What are constraints and concepts?
● Constraints?

constraints specify requirements on template arguments to select the 
most appropriate function overloads and template specializations.

● Concepts?
concepts are named set of such constraints/requirements

● Introduced from C++20 onwards, new keywords - requires, concept
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Why constraints and concepts?

● Violations of constraints detected at compile time before template instantiation

● –-> leads to easy to follow error messages

● On a subjective note:
○ More safety
○ Better readability of code
○ speed up compilation time
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How to define?
● requires expressions: yields a prvalue expression of type bool that describes the 

constraints (different from requires clauses).

requires (parameter list) {sequence of requirements}
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● You can also name this expression (or their combination of multiple 
expressions) as a concept

● Four main categories as of now:
○ simple requirement
○ type requirement
○ compound requirement
○ nested requirement

optional



Simple Requirement
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● Must start parenthesized requires expression
● Cannot start with requires
● Only checks if the expression is valid
● Operand is unevaluated



Type Requirement
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● Has the form: typename identifier
● Asserts that the type named by identifier is valid
● Only checks if the expression is valid
● Operand is unevaluated



Compound Requirement
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● Has the form: { expression } noexcept -> type-constraint ; 

● Asserts properties of expression 
● Substitution and semantic constraint checking
● If exists takes the decltype((expression )) as the first argument to the 

type-constraint

optional



Additional notes on definition of constraints
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● Local parameters have:
○ no linkage
○ no storage
○ no lifetime.

● If substitution of template arguments result in invalid types or 
expressions, requires expression evaluates to false

● If substitution (if any) and semantic constraint checking succeed, 
the requires expression evaluates to true

● ill-formed no diagnostic required (IFNDR) If:
○ a substitution failure would occur for every possible 

template argument
○ a requires expression contains invalid types or expressions 

in its requirements (we will see later)
○ A local parameter has a default argument.
○ The parameter list terminate with an ellipsis.



How to use them?
● requires clauses: keyword used to 

constraints on template arguments 
or on a function declaration.

● Must be followed by some 
constant expression (even 
requires true is valid)
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● Example

type_traits header consists of 
many helpful bits to use with 
requires expression. Helpful 
concepts are also defined in the 
concepts header



How to use them?
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● takes one less template argument 
than its parameter list demands

● contextually deduced type is 
implicitly used as the first 
argument of the concept.



Additional notes on using constraints
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● You can redeclare them, no problem

● IFNDR if:
○ Logically equivalent but 

syntactically different
○ Logically equivalent but 

different order of constraints



Types of constraints
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3 types until C++26 and 4 since C++26:

1. Conjunctions
2. Disjunctions
3. Atomic constraints
4. Fold expanded constraints (added in C++26)



Types of constraints
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● Conjunctions
○ formed by using the && operator in the constraint expression
○ satisfied only if both constraints are satisfied
○ evaluated left to right
○ short-circuited



Types of constraints
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● Disjunctions
○ formed by using the || operator in the constraint expression

○ satisfied if either constraint is satisfied.
○ evaluated left to right
○ short-circuited



Atomic constraints
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● Most fundamental expression of a contraint

● Formed during constraint normalization

● Consists of two parts:
○ expression E
○ parameter mapping

● E is never a logical AND or logical OR expression

● The type of E after substitution must be exactly bool



Constraint normalization
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● process that transforms a constraint expression into a sequence of 
conjunctions and disjunctions of atomic constraints

● The normal form of an expression (E) is the normal form of E

● Usually the parameter mapping is the identity mapping.

● However, if another concept, say C, is named within the constraint, then 
we’ll have substitution of C's respective template parameters in the 
parameter mappings of each atomic constraint of C 

● If any such substitution into the parameter mappings results in an 
invalid type or expression, the program is IFNDR



Constraint normalization
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Examples of valid and invalid 
constraint normalizations



Additional notes
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● Concepts cannot recursively refer to 
themselves and cannot be constrained.

● A constraint P can subsume constraint Q

● If P subsume constraint Q, then P is at 
least as constrained as Q.

● If Q is not at least as constrained as P, 
then P is more constrained than Q.
This can lead to Partial ordering which is 
used to determine best viable overload 
among others



Additional use cases
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● When initializing variables with type as auto for 
type deduction, we can constrain auto to 
constrain the possible initializer values

#include <concepts>
std::integral auto i = 2;

● constexpr if statement (C++17): concepts can 
be used here because they evaluate to prvalue 
of type bool

● You can use them with static_assert (for tests 
etc)



Alternative to SFINAE
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● Assume we want to add to container.
We wish to create a unified generic interface 
for this.

● Incorrect version (redefinition)



Alternative to SFINAE
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● Correct version 
(std::enable_if)



Alternative to SFINAE
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● Correct version 
(concepts)



Thank You …
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