
Akhil Mithran
PhD Student

GSI C++ User Group

Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany

Goethe-Universität Frankfurt, Frankfurt am Main, Germany

Improve generic APIs with constraints
(concepts)

February 05, 2025

What are constraints and concepts?
● Constraints?

constraints specify requirements on template arguments to select the
most appropriate function overloads and template specializations.

● Concepts?
concepts are named set of such constraints/requirements

● Introduced from C++20 onwards, new keywords - requires, concept

2

Why constraints and concepts?

● Violations of constraints detected at compile time before template instantiation

● –-> leads to easy to follow error messages

● On a subjective note:
○ More safety
○ Better readability of code
○ speed up compilation time

3

Why constraints and concepts?

● leads to easy to follow error messages

4

Why constraints and concepts?

● leads to easy to follow error messages

5

Why constraints and concepts?

● leads to easy to follow error messages

6

How to define?
● requires expressions: yields a prvalue expression of type bool that describes the

constraints (different from requires clauses).

requires (parameter list) {sequence of requirements}

7

● You can also name this expression (or their combination of multiple
expressions) as a concept

● Four main categories as of now:
○ simple requirement
○ type requirement
○ compound requirement
○ nested requirement

optional

Simple Requirement

8

● Must start parenthesized requires expression
● Cannot start with requires
● Only checks if the expression is valid
● Operand is unevaluated

Type Requirement

9

● Has the form: typename identifier
● Asserts that the type named by identifier is valid
● Only checks if the expression is valid
● Operand is unevaluated

Compound Requirement

10

● Has the form: { expression } noexcept -> type-constraint ;

● Asserts properties of expression 
● Substitution and semantic constraint checking
● If exists takes the decltype((expression )) as the first argument to the

type-constraint

optional

Additional notes on definition of constraints

11

● Local parameters have:
○ no linkage
○ no storage
○ no lifetime.

● If substitution of template arguments result in invalid types or
expressions, requires expression evaluates to false

● If substitution (if any) and semantic constraint checking succeed,
the requires expression evaluates to true

● ill-formed no diagnostic required (IFNDR) If:
○ a substitution failure would occur for every possible

template argument
○ a requires expression contains invalid types or expressions

in its requirements (we will see later)
○ A local parameter has a default argument.
○ The parameter list terminate with an ellipsis.

How to use them?
● requires clauses: keyword used to

constraints on template arguments
or on a function declaration.

● Must be followed by some
constant expression (even
requires true is valid)

12

● Example

type_traits header consists of
many helpful bits to use with
requires expression. Helpful
concepts are also defined in the
concepts header

How to use them?

13

● takes one less template argument
than its parameter list demands

● contextually deduced type is
implicitly used as the first
argument of the concept.

Additional notes on using constraints

14

● You can redeclare them, no problem

● IFNDR if:
○ Logically equivalent but

syntactically different
○ Logically equivalent but

different order of constraints

Types of constraints

15

3 types until C++26 and 4 since C++26:

1. Conjunctions
2. Disjunctions
3. Atomic constraints
4. Fold expanded constraints (added in C++26)

Types of constraints

16

● Conjunctions
○ formed by using the && operator in the constraint expression
○ satisfied only if both constraints are satisfied
○ evaluated left to right
○ short-circuited

Types of constraints

17

● Disjunctions
○ formed by using the || operator in the constraint expression

○ satisfied if either constraint is satisfied.
○ evaluated left to right
○ short-circuited

Atomic constraints

18

● Most fundamental expression of a contraint

● Formed during constraint normalization

● Consists of two parts:
○ expression E
○ parameter mapping

● E is never a logical AND or logical OR expression

● The type of E after substitution must be exactly bool

Constraint normalization

19

● process that transforms a constraint expression into a sequence of
conjunctions and disjunctions of atomic constraints

● The normal form of an expression (E) is the normal form of E

● Usually the parameter mapping is the identity mapping.

● However, if another concept, say C, is named within the constraint, then
we’ll have substitution of C's respective template parameters in the
parameter mappings of each atomic constraint of C

● If any such substitution into the parameter mappings results in an
invalid type or expression, the program is IFNDR

Constraint normalization

20

Examples of valid and invalid
constraint normalizations

Additional notes

21

● Concepts cannot recursively refer to
themselves and cannot be constrained.

● A constraint P can subsume constraint Q

● If P subsume constraint Q, then P is at
least as constrained as Q.

● If Q is not at least as constrained as P,
then P is more constrained than Q.
This can lead to Partial ordering which is
used to determine best viable overload
among others

Additional use cases

22

● When initializing variables with type as auto for
type deduction, we can constrain auto to
constrain the possible initializer values

#include <concepts>
std::integral auto i = 2;

● constexpr if statement (C++17): concepts can
be used here because they evaluate to prvalue
of type bool

● You can use them with static_assert (for tests
etc)

Alternative to SFINAE

23

● Assume we want to add to container.
We wish to create a unified generic interface
for this.

● Incorrect version (redefinition)

Alternative to SFINAE

24

● Correct version
(std::enable_if)

Alternative to SFINAE

25

● Correct version
(concepts)

Thank You …

26

References

● https://en.cppreference.com/w/cpp/language/constraints
● https://www.cppstories.com/2021/concepts-intro/
● https://www.youtube.com/watch?v=jzwqTi7n-rg

(Back to Basics: Concepts in C++ - Nicolai Josuttis - CppCon 2024)
● https://carbon.now.sh (For creating terminal screenshots)

https://en.cppreference.com/w/cpp/language/constraints
https://www.cppstories.com/2021/concepts-intro/
https://www.youtube.com/watch?v=jzwqTi7n-rg
https://carbon.now.sh

