PANDA CM Goa: Lumi Session

PANDA Luminosity Detector Status Report: Luminosity Fit

Stefan Pflüger

LUMINOSITY DEFINITION

Typical Scattering Process

$$\frac{dN(ps)}{dps} = L \cdot \frac{d\sigma(ps)}{dps}$$

- $\odot \frac{dN}{dps}$: measured number of events within phase space element *d*ps
- \odot ps: phase space variables
- $\frac{d\sigma}{dps}$: differential cross section
- L: integrated luminosity

Reducing uncertainty of cross section \rightarrow pick well known process e.g. elastic scattering

$\bar{p}p$ Elastic Scattering Model

GENERATING A DATA SAMPLE

STEP 1: CONVERT TO SCATTERING ANGLE θ

 $p_{\text{lab}} = 1.5 \text{ GeV}/c$

- transformation of data and model: momentum transfer t → scattering angle θ
 corresponds to
 - measurement of an idealistic detector (no resolution) with 4π spatial coverage

STEP 2: THE DETECTOR ACCEPTANCE

 $\epsilon(\theta,\phi)$

$p_{\text{lab}} = 1.5 \,\text{GeV}/c$

 \odot Efficiency in plateau $\approx 98\%$

STEP 2 CONTD.: ACCEPTANCE CORRECTED FIT

 \rightarrow luminosity fit uncertainty: $0.23\% \pm 0.75\%$

 $p_{\text{lab}} = 1.5 \,\text{GeV}/c$

- generated and successfully reconstructed data without the influence of detector resolution
- corresponds to measurement of an idealistic detector with finite spatial coverage

STEP 3: DETECTOR RESOLUTION

 $Res(\theta)$

 $p_{\text{lab}} = 1.5 \,\text{GeV}/c$

STEP 3 CONTD.: COMPLETE FIT

 \rightarrow luminosity fit uncertainty: 1.22% \pm 0.75% $p_{\text{lab}} = 1.5 \,\text{GeV}/c$

- reconstructed data (full simulation)
- corresponds to a realistic measurement of the luminosity detector

STEP 3 CONTD.: COMPLETE FIT

 $\frac{dN(\theta)}{d\theta} = L \cdot \left[\frac{d\sigma(\theta)}{d\theta} \cdot \boldsymbol{\epsilon}(\theta) \right] \otimes Res(\theta)$

 $p_{\rm lab} = 15.0 \,{\rm GeV}/c$

 \rightarrow luminosity fit uncertainty: 0.12% \pm 0.42%

Smearing Problem Cause: Θ resolution

PANDA Luminosity Detector

Stefan Pflüger

NEW RESOLUTION PARAMETRIZATION

NEW FIT RESULTS AT $p_{\text{lab}} = 1.5 \,\text{GeV}/c$

- better agreement with data
- larger luminosity fit uncertainty

INFLUENCE OF THE BEAM PARAMETERS

Categories

Beam Offset

parallel shift of beam w.r.t. z-axis

- ⊙ equivalent to displacement of detector vertical to beam axis
 → acceptance changes
- advantage: measured directly and independently
 → complete correction with acceptance

Oblique Beam

 \bar{p} enter with an angle w.r.t. *z*-axis

- \odot equivalent to rotation of detector \rightarrow acceptance changes
- however: additional change in coordinate system
 → model correction required
- difficulty: direct/independent measurement impossible

note: beam divergence is an additional angular resolution

The Model Framework

MODEL EXAMPLE: PANDA LMD

LMD SPECIFIC USER WORKFLOW

- \odot model allows full customization
- \odot however for LMD
 - ▷ creation of models via factory only
 - \rightarrow usage simplified
 - ▷ parametrizations automatically built-in
 - \rightarrow parameter initialization and connections
 - \triangleright only "superior" parameters (here: p_{lab}) MUST be set by user

CONCLUSIONS & OUTLOOK

- extraction of luminosity with high precision
- $\odot\,$ now: good agreement with data for all beam energies
- \odot however: still small problem with smearing at $p_{\text{lab}} = 1.5 \,\text{GeV}/c$
- finish model framework

Thanks for your Attention!

ELASTIC CROSS SECTION

$$\frac{d\sigma}{dt} = \frac{d\sigma_{C}}{dt} + \frac{d\sigma_{int}}{dt} + \frac{d\sigma_{H}}{dt}$$
with
$$\frac{d\sigma_{C}}{dt} = \frac{4\pi\alpha_{EM}^{2}G^{4}(t)}{\beta^{2}t^{2}}$$

$$\frac{d\sigma_{int}}{dt} = \frac{\alpha_{EM}\sigma_{Total}}{\beta|t|}G^{2}(t)e^{\frac{1}{2}Bt}(\rho\cos(\delta) + \sin(\delta))$$

$$\frac{d\sigma_{H}}{dt} = A_{1} \cdot \left[e^{t/2t_{1}} - A_{2} \cdot e^{t/2t_{2}}\right]^{2} + A_{3} \cdot e^{t/t_{2}}$$