The PANDA beam pipe From the view of The luminosity detector

Prometeusz Jasinski

for the PALUMA group 04.02.2013 PANDA beam pipe meeting

Helmholtz-Institut Mainz

The status up to now on EDMS

Send by B.Lewandowski 07.04.12

Beampipe and the simplified luminosity detector are available on EDMS

Current beam pipe design

Our studies on the

Bending radius + acceptance

Fit of a "beam pipe"-function to the data

Proposal for a parameter modification

	Fit fixed phi	proposal	Current values
bend start	360.2 cm	361 cm	361 cm
bend radius	5754 cm	5700 cm	6000 cm
bend phi	40.00 mrad	40.00 mrad	40.00 mrad
(z bend end)		361+227.93	361+239.93

A straight part of 12 cm must be inserted to the current CAD design

Engeneers from Juelich are working with "current values" and do not Intent to modify the PANDA boundry conditions.

Residuals for the proposed parameters

The target spread

Figure 8: Cluster beam profiles with the use of a collimator of with a round opening (left) and a slit (right). The profiles show that the cluster beam is slightly shapeable.

Design and performance of the future cluster-jet target for PANDA at FAIR 8th International Conference on Nuclear Physics at Storage Rings-Storil1, October 9-14, 2011 Laboratori Nazionali di Frascati dell'INFN, Italy

Prometeusz Jasinski

The beam pipe acceptance in the dipole region

Primary vertex displacement x = -1.5 mm y = -1.5 mm

1.5 GeV

The position of the "bottle neck"

(animated gif not available in the pdf version)

Dipole pipe enlarged by R += 0.5 cm

Primary vertex displacement x = -3 mm y = -3 mm

Approved at the Paris PANDA collaboration meeting

Prometeusz Jasinski

Enlargment of the dipole region diameter

Checking the downstream part of the beam pipe

Checking the downstream part of the beam pipe

1.5 GeV

Comunication with Alexeev

- DN 160 (dia 180 mm) beam pipe can be replaced by DN 200 pipe (dia 200 mm)
- The present design foresees flange sizes up to 280 mm. DN 200 outer diameter of the flage is 253.2 mm. Should be safe.

Regions to be enlarged

Position of the bottleneck

Send by B.Lewandowski 07.04.12

Thank you

Details on the luminosity detector

One detector plane half

Cooling concept

4 inlets ______ for each station 1 for a pressure adjustment between planes

Merged to 2 outlets

Pipe diameters are chosen to give a similar flow resistance at each stage.

4 pipes per plane with opposite flow directions for a more uniform temperature gradient

Cooling stations for cooling liquids

04.02.2013

Thank you!

Backup slides

Load performance of the LAUDA pump

Pump characteristics Integral XT XT 150, XT 250 W, XT 280, XT 280 W, XT 350 W, XT 350 HW, XT 490 W, XT 550, XT 550 W, XT 750, XT 750 S, XT 750 H, XT 750 HS, XT 950 W, XT 950 WS, XT 1590 W and XT 1590 WS Measured with water

CFD studies on the concept

1 bar at the inlet applied. 0 bar at the outlet. \rightarrow No significant pressure drop observed. Flow 200 ml/s = 12 l/min of ethylglycol

Prometeusz Jasinski

Temperature distribution

Temperature difference of up to 3.3 degree at 1.6 kW power consumption per detector half.

Temperature distribution on one plane half

Cooling task will be taken over by a new PhD student. Prototype tests in preparation.

The LUMI prototype

Welding tube inside

Melting in a copper mold

P3 ,

Melting in a SS mold with inert gas

The biggest fun we had: *"Baking cookies"*

Question was: Can we melt aluminum cooling blocks around a stainless steel pipe?

Prototype 5: Vacuum

melting / pressurized

freezing.. Perfect!

– As Aluminum crimps more we must get a nice crimp contact though?

Prototype 4: Mg vapor bubbles due to vacuum

Applied vacuum method bonded SS to Alu by diffusion of Fe into Al

Result of vacuum baking: A: Perfect contact around the pipe, B: perfect contra shape of the mold

- Aluminum cookie recipe:
 - Take a stainless steel tin and fill with aluminum blocks or bars (AIMg4,5Mn)
 - Melt aluminum under vacuum <1e-3 mbar at 700°C for 1.5 hour
 - Apply 1 bar Argon pressure for 10 minutes
 - Switch of oven and let cool down.
 - Remove cookies from the mold and machine

CERN

"The cookie bakery"

CERN

Assembly tools

