PANDA Barrel DIRC Mainz Status Report

Matthias Hoek, Matteo Cardinali, Werner Lauth, Christoph Rosner, Concettina Sfienti, Michaela Thiel

PANDA PID Meeting | GSI | 27.02.2013

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Black Box Status

- Construction finished
 - Established hermetic light seal
- Set up optical system
 - Illuminate pixel 36
 - Adjust laser intensity Gain ~1.0e6 at 2000V
 - Check MCP-PMT timing 100ps raw timing

Black Box Status

- Construction finished
 - Established hermetic light seal
- Set up optical system
 - Illuminate pixel 36
 - Adjust laser intensity Gain ~1.0e6 at 2000V
 - Check MCP-PMT timing 100ps raw timing

Black Box Status

- Construction finished
 - Established hermetic light seal
- Set up optical system
 - Illuminate pixel 36
 - Adjust laser intensity Gain ~1.0e6 at 2000V
 - Check MCP-PMT timing 100ps raw timing

MCP-PMT Signal Study

- Sample analogue signal w oscilloscope
 - 10GS/s, 1GHz BW
- Noise level
 - < 0.5mV RMS</p>
 - Offset negligible
- Pulse shape & amplitude
 - Linear correlation between amplitude & area
 - Time-over-Threshold saturates (~2ns)
 - Agrees with Matteo's results

MCP-PMT Signal Study

- Sample analogue signal w oscilloscope
 - 10GS/s, 1GHz BW
- Noise level
 - < 0.5mV RMS</p>
 - Offset negligible
- Pulse shape & amplitude
 - Linear correlation between amplitude & area
 - Time-over-Threshold saturates (~2ns)
 - Agrees with Matteo's results

MCP-PMT Signal Study

- Sample analogue signal w oscilloscope
 - 10GS/s, 1GHz BW
- Noise level
 - < 0.5mV RMS</p>
 - Offset negligible
- Pulse shape & amplitude
 - Linear correlation between amplitude & area
 - Time-over-Threshold saturates (~2ns)
 - Agrees with Matteo's results

- Framework
 - Decoding & Time Calibration
 Two calibration methods available
- Data Quality
 - < 2% event rejection</p>
- Hits
 - Combine leading & trailing edge timestamps
 - Limited to single hits for now
- Timing
 - 100kHz trigger rate \rightarrow 10µs window
 - Investigate hit distribution within event

- Framework
 - Decoding & Time Calibration
 Two calibration methods available
- Data Quality
 - < 2% event rejection</p>
- Hits
 - Combine leading & trailing edge timestamps
 - Limited to single hits for now
- Timing
 - 100kHz trigger rate \rightarrow 10µs window
 - Investigate hit distribution within event

- Framework
 - Decoding & Time Calibration
 Two calibration methods available
- Data Quality
 - < 2% event rejection</p>
- Hits
 - Combine leading & trailing edge timestamps
 - Limited to single hits for now
- Timing
 - 100kHz trigger rate \rightarrow 10µs window
 - Investigate hit distribution within event

- Framework
 - Decoding & Time Calibration
 Two calibration methods available
- Data Quality
 - < 2% event rejection</p>
- Hits
 - Combine leading & trailing edge timestamps
 - Limited to single hits for now
- Timing
 - 100kHz trigger rate \rightarrow 10µs window
 - Investigate hit distribution within event

- Framework
 - Decoding & Time Calibration
 Two calibration methods available
- Data Quality
 - < 2% event rejection</p>
- Hits
 - Combine leading & trailing edge timestamps
 - Limited to single hits for now
- Timing
 - 100kHz trigger rate \rightarrow 10µs window
 - Investigate hit distribution within event

Next Steps

- Black Box
 - Run w TRBv3 DAQ
- Electronics
 - Study NINO threshold behaviour
 - Investigate crosstalk characteristics
 - Waiting for COME&KISS
- Data Analysis
 - Implement clustering algorithm
- Tracking
 - Setting up 10×10cm² GEM (~250µm resolution)
- Test experiment preparations
 - Electrons at MAMI X1 beam line