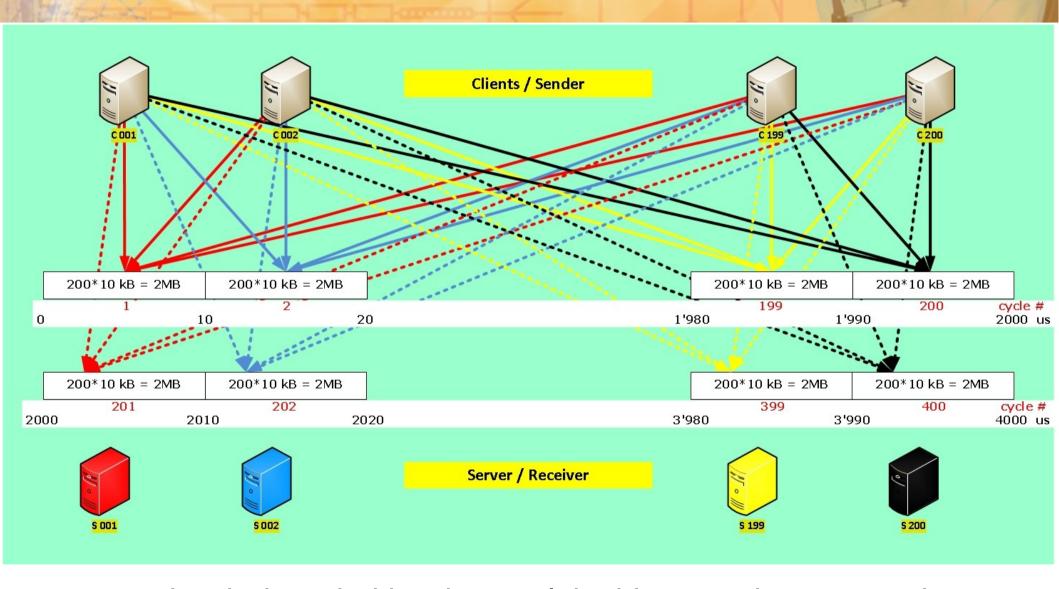
Panda Networking Options Ethernet vs. InfiniBand

Outline

- Requirements
- Possible Ethernet Setup
- Possible InfiniBand Setup
- Ethernet vs. InfiniBand
- Conclusion



Network Requirements for PANDA

- 200 input streams with 10 Gb/s each
- 200 output streams with 10 Gb/s each
- Bursts of about 10 us
 - all sources send 10 kBytes to one destination
 - 10 us later all sources send to a different destination
- Consequences for worst case scenario:
 - 200 times 10 kBytes = 2 MBytes have to be stored in each input port

GSİ

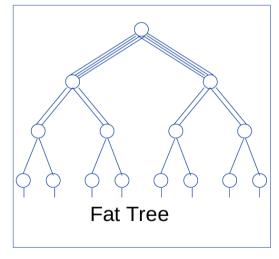
Requirements: II

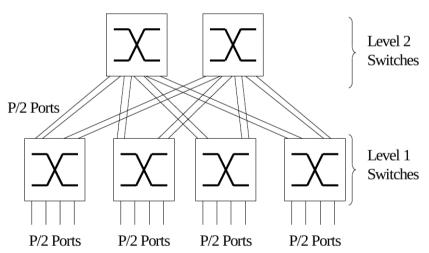
Gerhard Aker tried hard to explain this to equipment vendors

Ethernet

- Brocade and Arista have been contacted
 - Both claimed that this very special traffic is no problem for their switches
- Brocade answer:
 - Current model: 12 MBytes input buffers per port
 - Quote: 200k€ for 190x190 setup
- Aristas answer
 - 100 Mbytes/port buffer
 - Quote: 227k€ for 200x200 setup
- Cables:
 - 148€ / 10Gb/s cable (up to 7 m) => 50k€

Ethernet II




- Looking into the future :-)
 - The GSI networking group deployed Ethernet networks from 1 Mb/s (pre-Ethernet) up to 10 Gb/s
 - Each new generation of Ethernet (normally a factor of 10 data rate increase) gave very roughly a factor of 3 reduction in price / (bit/s).
 - 10 Gb/s is mature now. 100 Gb/s existing but still expensive. Deployment of 100 Gb/s is expected soon.

Infiniband: I

- Possible PANDA-solution:
 - Fat-tree architecture
 - 9 InfiniBand switches (36 ports each) with 18 times 6 =
 108 usable input/output ports, each nominal 40 Gb/s
 - Theoretical: 8Tb/s => more realistic: 2 Tb/s

 Pictures taken from: http://www.mellanox.com/pdf/whitepapers/IB_vs_Ethernet_Clustering_WP_100.pdf

Infiniband: II

- Price today for such a solution:
 - 45k€ switches + 30k€ cables => 75k€
- The disadvantage of this solution:
 - InfiniBand doesn't have significant input buffers (cut through switching used as low latency is the main concern for supercomputer clusters)
 - one needs traffic shaping/reordering (with memory)
 - Standard servers which also could do the transfer from Ethernet to InfiniBand
- Sergey Linev has shown that this works in large setups (774 nodes, 10Tb/s):
 - Up to 70% of the bandwidth is usable

G S İ

Ethernet vs. InfiniBand: I

- Optimized InfiniBand is much cheaper:
 - ~75k€ vs. 250k€ for "plug&play" Ethernet
 - Comparable Ethernet solution: 130k€
- InfiniBand solution:
 - more complex and less reliable
 - Need many servers with traffic shaping software
 - Servers + software tend to be less reliable than plain switches
 - Additional costs for servers
 - "Single" vendor: Mellanox

GSİ

Ethernet vs. InfiniBand: II

- Experience from the GSI-HPC group
 - "InfiniBand either works great or it doesn't. If it doesn't work it is hard to debug. Management is not simple!"
 - Bridging the Ethernet-world to InfiniBand for 1 Tb/s is in operation using normal servers with InfiniBand and Ethernet network adapters.
- Modern Ethernet switches have high level line speed diagnostics embedded
 - e.g. "Precision Data Analysis" from Arista
 - Today: external very expensive analysis hardware

GSI

Conclusion

- Networking solutions for PANDA:
 - Optimized InfiniBand is a factor of 2 cheaper than optimized Ethernet
 - "Plug&Play" Ethernet costs 250k€
 - InfiniBand setup is more complex and harder to maintain/debug
- Total costs for this mission critical (single point of failure) central part of PANDA is "small"
- It could even be considered to:
 - First use a solution for the needed bandwidths in the first years of operation and upgrade the network when needed
- Any commercial network has many huge advantages compared to a highly optimized custom solution: not even the price seems to be an argument!

GSİ

Thank you for your attention!