

SODANET Specifications And Current Status of the Implementation

M. Drochner, <u>M. Kavatsyuk</u>, H. Kleines, P. Lemmens, J. Michel, M. Palka, P. Schakel

SODA Workshop (January, GSI)

Responsibilities, time scales, resource requirements

- Study group to define SODA protocol for SODAnet
 - Myroslav Kavatsyuk, {Chair} Peter Lemmens, Peter Schakel, (KVI), Marek Palka (Krakow), Matthias Drochner, Harald Kleines (Jülich), Jan Michel (Frankfurt, consulting)
 - Results should be reported during the April DAQ Workshop
- Feasibility of synchronous timing with TRB V3 (jitter measurement)
 - Marek Palka (Krakow), Jan Michel (to be approved by J.Stroth)
 - Should be ready by mid February
 - Results should be reported during the April DAQ Workshop

2

- Implementation SODAnet source on TRB3
 - Peter Lemmens (KVI) with help from Marek Palka (Krakow) and Jan Michel (Frankfurt)
 - Should be ready by end of June

Open questions

- Explore potential synergies between CBMnet and SODAnet
- Explore hardware options for burst-building network

SODA Workshop (January, GSI)

Responsibilities, time scales, resource requirements

- Study group to define SODA protocol for SODAnet
 - Myroslav Kavatsyuk, {Chair} Peter Lemmens, Peter Schakel, (KVI), Marek Palka (Krakow), Matthias Drochner, Harald Kleines (Jülich), Jan Michel (Frankfurt, consulting)
 - Results should be reported during the April DAQ Workshop
 - Tested by Jan Michel and Michael Traxler (January 16):
 - Synchronous connection works for TRB V3
 - First recovery of a clock: 30 ps jitter (10 ps from oscilloscope)
 - 6 recoveries in chain: 40 ps jitter
- Implementation SODAnet source on TRB3
 - Peter Lemmens (KVI) with help from Marek Palka (Krakow) and Jan Michel (Frankfurt)

3

Should be ready by end of June

Open questions

- Explore potential synergies between CBMnet and SODAnet
- Explore hardware options for burst-building network

SODANET

Design considerations:

- Preserve readout topology as defined in the PANDA TPR
- Reuse as much as possible code of the TRBNET
- Key changes of the TRBNET compatible with the CBMNET protocol

KVI SODANET Functionality

SODANET provides:

- synchronization of the FEE
- Continuous monitoring of the DC/FEE functionality
- Rough (initial) time calibration of the propagation time of the synchronization signal
- Transfer of a slow-control (FEE configuration/status) information: low priority, transmission of a slow-control package can be interrupted at any time by a synchronization package

κνι

SODANET Topology

SODANET link:

- Bidirectional
- Synchronous (only in one direction)

university o groningen

FS 55 W

- Transfer:
 - source → DC: synchronization information and FEE configuration
 - <u>DC → source</u>: slow control, used for time calibration

Data link (DC \rightarrow **BBN)**:

- Unidirectional
 Ethernet
- Link DC \leftrightarrow FEE:
 - Bidirectional, synchronous
 - Protocol up to subsystem

κνι

SODANET Synchronous Packages

SODANET protocol foresees two types of sync. packages:

- Command data: issued at any time
- Super-burst start (super burst = 16 bursts of 2.4 μs): issued at the beginning of each Super-burst

Package structure

K	Data	K	Data	K	Data	K	Data
(FB)	31-24	(FB)	23-16	(FB)	15-8	(FB)	7-0

Command package:

- Bit 31: 0
- Bit 30: Time calibration
- Bit 29: DAQ start
- Bit 28: DAQ stop
- Bit 27: Reset
- Bits 26-8: reserved
- Bits 7-0: CRC checksum (CRC8-CCITT)

Super-burst start package:

- Bit 31: 1
- Bits 30-0: Super-burst number

Synchronous Packages

- Have highest priority (interrupt any other transfer)
- Each received SODANET packed acknowledged: continuous monitoring of the readout
 Malfunction of one of the DC/FEE → trigger slow control;
 - the malfunction DC added to the list of non-uses recipients
- Burst counting (within Super-burst) at each DC Error handling:
 - DC checks if received super-burst number is sequential
 - In case of error:
 - the DC uses number distributed by the SODANET,
 - set special error bit in the output data,
 - informs slow-control system
 - If part of SODANET message is missing:
 - DC uses super-burst number from a local counter,
 - reports problem to the slow-control system.

Time Calibration

- Dedicated "time calibration" command is defined
- Once the command is received:
 - reply sent to the transmitter side,
 - original message is forwarded further through the network.
- Propagation time:

- calculated at the transmitter side
- stored in a register
- the register values read out by a slow control system.
- The delay data used to pre-calculate signal-propagation delays (~10 ns precision)
- Delay values used at the DC to delay SODANET-synchronisation signals, before redistribution to FEE.
- The longest delay value used by the SODANET source to send synchronisation commands prior to a bunch crossing

"Triggered" Mode Compatibility mode of operation

- External "trigger" signal is feed to one of the DC/SODANET source
- "trigger" is timestamped, and sent to the burst-building network
- Event builder will select only hits with timestamps, which are in coincidence with the "trigger" signal

KVI DC Output Data-format

• DC can start transmitting FEE data once it is available

(without waiting till the end of a super-burst)

groninge

If no data are available –

DC sends an empty package at the end of the Super-burst

Data-package

GbE paket builder in FPGA (HADES) can be reused to pack data

SODA Workshop (January, GSI)

- Study group to define SODA protocol for SODAnet
 - Myroslav Kavatsyuk, {Chair} Peter Lemmens, Peter Schakel, (KVI), Marek Palka (Krakow), Matthias Drochner, Harald Kleines (Jülich), Jan Michel (Frankfurt, consulting)
 - Results should be reported during the April DAQ Workshop
- Feasibility of synchronous timing with TRB V3 (jitter measurement)
 - Marek Palka (Krakow), Jan Michel (to be approved by J.Stroth)
 - Should be ready by mid February
 - Results should be reported during the April DAQ Workshop

12

- Implementation SODAnet source on TRB3
 - Peter Lemmens (KVI) with help from Marek Palka (Krakow) and Jan Michel (Frankfurt)
 - Should be ready by end of June

Open questions

- Explore potential synergies between CBMnet and SODAnet
- Explore hardware options for burst-building network

SODANET Implementation status

- Cleaned-up SODANET VHDL repository (files, relevant only for the SODANET)
 - Implemented synchronous transmission at 100 MHz on the main and preferential FPGAs of a TRB board [hardware test]
- Super-burst generator (source) [tested with simulations]
- Package builder (source) [tested with simulations]
- Package handler (source/hub/DC) [tested with simulations]
- Interface of the SODANET to the TRB slow control
- Feedback handler (time calibration, monitoring)
- Fix synchronous-transmission frequency at 77.76 MHz (design does not work jet at 125 MHz)
- Jitter cleaner addon

SODANET Implementation status

- Cleaned-up SODANET VHDL repository (files, relevant only for the SODANET)
 - Implemented synchronous transmission at 100 MHz on the main and preferential FPGAs of a TRB board [hardware test]
- Super-burst generator (source) [tested with simulations]
- Package builder (source) [tested with simulations]
- Package handler (source/hub/DC) [tested with simulations]
- Interface of the SODANET to the TRB slow control
- Feedback handler (time calibration, monitoring)
- Fix synchronous-transmission frequency at 77.76 MHz (design does not work jet at 125 MHz)
- Jitter cleaner addon

KVI

Thank you for your attention!

PANDA Readout

[I. Konorov et al., NSS/MIC Conf. Rec., 2009 IEEE, DOI 10.1109/NSSMIC.2009.5402172]

Combine

KVI

Detector Front-ends

<u>Hit detection,</u> <u>feature-extraction</u>

Data Concentrator

First Stage "Event" Builder

Second Stage "Event" Builder <u>Time-ordering</u> (building

several Front-Ends

physics events)

Compute Node

On-line processing of complete events, <u>Accept/reject decision</u>

16

groningei

Time-Synchronisation: Requirements

... To be precisely defined

• Desired:

KVI

- Distribution of clock (154.52 SONET standard)
- Distribution of synchronisation commands (Start, Stop, Calibration light-flash, etc.)
- Acceptable jitter:
 - < 20 ps (TOF, DIRC)
 - < 100 ps (EMC)
 - < 200 ps (STT, MWD, etc.)
- Signal distributed over an optical fibre

Optional:

- Measurement of a signal-propagation time (cable length)
- Distribution of detector-configuration data
- Configuration of the burst-building network
- Slow control for small subsystems