

PANDA FEE-DAQ Workshop

Status report of the Silicon Pixel Detector Readout Electronics

G. Mazza on behalf of the Torino MVD pixel group

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

PANDA MVD

Barrel :

Layer 1 : radius 28 mm, SPDs Layer 2 : radius 53 mm, SPDs Layer 3 : radius 92 mm, SSDs Layer 4 : radius 120 mm, SSDs

* Forward :

Disks 1-2 : radius 37.5 mm, SPDs

Disks 3-4 : radius 75 mm, SPDs

Disks 5-6 : radius 130 mm, SPDs + SSDs

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

Pixel Detector

Pixel size	100 × 100 μm²
Chip active area	11.4 × 11.6 mm² (116 rows, 110 columns)
dE/dx measurement	ToT, 12 bits dynamic range
Max input charge	50 fC
Noise floor	<32 aC (200 e ⁻)
Input clock frequency	155.52 MHz
Time resolution	6.43 ns (1.86 ns r.m.s.) 12.86 ns (3.71 ns r.m.s.)
Power consumption	< 800 mW/cm ²
Max event rate	$6.1 \cdot 10^{6}$
Total ionizing dose	< 100 kGy

Gianni Mazza

Module readout

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

ToPiX v3

- Layout submitted on February 7th received May 16th 2011
- 4.5x4 mm² die area
- CMOS 0.13 μm DM technology
- Triple redundancy-based SEU protection
- End of column logic
- 160 Mb/s SLVS serial output
- Pads for bump bonding

ToPiX v3 layout

- * 4.5 mm × 4 mm
- * CMOS 130 nm
- * Clock frequency 160 MHz
- bump bonding pads
- * 2×2×128 columns
- * 2×2×32 columns
- * 32 cells EoC FIFO
- * SEU protected EoC
- * Serial data output
- * SLVS I/O

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

- At 160MHz can only read and program first ~32 pixels of each column
- * At 50MHz (with pre-emphasis disabled) full operation
- S-curve working well (programmable internal test pulse)
- Baseline measurements ok
- * On-pixel DACs characterised and correction applied
- * Transfer function measurements in good agreement with simulations
- * Acquisition system is working (4 boards)
- * Tested in beam tests at CERN SPS and Julich COSY facilities
- * TID (@X ray-CERN) and SEU (@SIRAD-LNL) tests done *Gianni Mazza* PANDA FEE-DAO Workshop, April

Open issues

- Clock frequency
- * Power consumption
- Radiation tolerance
 - * TID effects
 - * SEU effects

Clock frequency problem

- * At 160 MHz only the columns with 32 double cells work correctly
- Response improves when the frequency is decreased
- * Improvements :
 - Prototype full column has 30% longer bus and 10% more cells than the final chip
 - * Triple redundancy latches have been connected without buffers
 - but buffers take power !!!
 - Change in the leading edge readout timing
- Bus estimated capacitance : 60.71 fF/dcell (v3), 49.91 fF/dcell (v4 sim. w/o buffers), 26.12 fF/dcell (v4 sim. with buffers)
- Total bus capacitance per line : 8.30 pF (v3), 6.92 pF (v4 sim. w/o buffers), 3.88 pF (v4 sim. with buffers) for 128 cells and folded layout

Gianni Mazza

Timing issue

50 MHz

65 MHz.

70 MHz

Trailing edge still good @ 65 MHz

- Read leading edge cmd asserted at the same time as read cmd.
- Read trailing edge cmdasserted when read cmdis already high
- Clock cycle to be inserted between read cmd and read leading edge cmd.

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

New line driver

Provides both reduced voltage swing and pre-emphasis or full voltage swing

J.C.Garcia, J.A.Montiel, S.Nooshabadi Adaptive Low/High Voltage Swing CMOS Driver for On-Chip Interconnects ISCAS 2007

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

v4 Tx-Rx simulations

Simulations of the new driver and 128 receivers for different frequencies assuming Gray encoding.

- w pe : with reduced voltage swing and pre-emphasis
- w/o pe : with full voltage swing and without pre-emphasis

On pixel buffers takes the lion's share of the power consumption of the time stamp driver

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

Pixel cell

le_reg and te_reg are implemented via DICE-protected latches

cfg_reg is implemented with TMR/Hamming correctted DFF

Time stamp bus is NOT buffered at the pixel level

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

Time stamp transmission - pe

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

Bus readout

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

Pixel cell SEU protection

- * Leading edge and trailing edge registers will use latches with DICE scheme
 - * 12 bits register size : $4.8 \ \mu m \times 98.4 \ \mu m$
- * Configuration register will use DFF. Two possible protection schemes :
 - Hamming encoding with self correction
 - Triple redundancy
- * Automatic P&R for control logic and configuration register over an area of 39.2 µm × 98.0 µm. Occupancy is 82% for Hamming encoding and 90% for TMR.
- * Total on-pixel digital area : $50 \ \mu m \times 100.0 \ \mu m$ (as in ToPiX v3)

TID tests - ToT

Probably due to effects in the clipping circuit – enclosed layout required ?

Gianni Mazza

During irradiation

Annealing @ 80 °C

ToPiX v4

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

Proposed arrangement for CMS tracker (C.Soos)

Versatile Transceiver 50×14×10 mm³ 45×15×8 mm³ (F.Vasey, J.Troska, C.Soos)

GBTx 10×10 mm² (*P.Moreira et al.*)

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

GBT status

- * GBTX :
 - * Final chip received, tests will start in May 2013 (*export license problems have delayed the packaging...*)
 - * Max power consumption 2.2 W (with all functionality on)
- * GBTIA :
 - * Version 2.0 ready for production performances slightly worse than v1.0
 - * Version 2.1 (bug fixing) currently under test
- * GBLD :
 - Current version (GBLD v4) can work up to 7.5 Gb/s with a power consumption of ~300 mW (with VCSELs)
 - A low power version (GBLD v5) targeted at VCSELs has been submitted and is expected to return from foundry in June. Expected power saving 40% (up to 65% if double power supply is available)

Gianni Mazza

GBT plans

- * GBT chipset production foreseen in Q2 2014
- * To be installed by LHC experiments during LS2 (2018)
- * LpGBT : low power GBT
 - * Target power consumption : 500 mW (75% reduction !)
 - * Technology : CMOS 65 nm (apart from GBLD)
 - * 2 GBTX versions (LpGBT with SerDes only and full GBTX)
 - * High bandwidth (4.8 Gb/s downlink, 4.8/9.6 Gb/s uplink)
 - Development will start in 2014
 - * Not yet an approved project...

Power regulator

* ToPiX power supply $1.2 \text{ V} - \text{I}_{\text{DC}} \sim 1 \text{ A}$ (estimated)

 \rightarrow voltage drop on cables is not negligible

- A DC-DC converter solution compatible with the radiation levels and the magnetic field of a silicon tracker is under development
 @ CERN for sLHC
- * Current CERN version : $V_{IN} 10 \div 12 \text{ V}, V_{OUT} = 1.2 \div 3.3 \text{ V}, I_{OUT} < 3 \text{ A}$
- * $V_{OUT} = 1.5 \text{ V}, I_{OUT} < 3-4 \text{ A now avail.}$
- * Tests with ToPiX v3 ongoing

Conclusions

- * Development of the ToPiX v4 has been delayed by concerns regarding radiation tolerance.
- Pixel cell registers, bus drivers and precharge logic have been completely redesigned in order to increase speed while reducing power. Design is well advanced.
- * To be done :
 - Radiation tolerance improvement of the analog part
 - Chip control unit with GBTX interface
- * GBT project toward mass prodution in 1.5 years
- * Tests on voltage regulators and low mass cables ongoing

PANDA FEE-DAQ Workshop

Backup slides

Gianni Mazza

- Very rough estimate
- Still room for improvements (ToPiX v3 not really designed having low power in mind...)

li Fisica Nucleare

Sezione di Torino

- Time stamp column drivers taken
 from NA62 GtkTo → room for
 improvement
- However, power is dominated by digital logic, therefore it is ∞ fclock

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

GBLD I2C SEU results

PANDA FEE-DAQ Workshop, April $29^{th} - 30^{th}$ 2013

ToPiX + sensor

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

PANDA FEE-DAQ Workshop, April 29th – 30th 2013

Baseline correction

Sezione di Torino

2013

Gian

Gain & Noise

<u>Gianni mazza</u>

ToT @ **5** nA


```
I_{FB} = 5 nA
Simulated gain : 202 ns/fC
```


Gianni Mazza