The GSI Event Driven TDC GET4

Holger Flemming, Harald Deppe GSI - EE - ASIC-Design

29.04.2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

Motivation

Requirements

The GET4 ASIC

TDC Core TDC Readout Additional Features Prototypes

Performance

Rate Capability Linearity Times Resolution Pulse Width Measurement

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Setup for Evaluation and Test

Outlook

Motivation

There are FPGA-TDCs with very high resolution. Why designing a TDC-ASIC?

- FPGA-Designer claim faster and more easy designs but efforts in manpower and expertise have to be studied in detail
- Very small devices fit close to the detector
- Reduction of costs
 - Cheaper devices
 - Lower requirements on PCB layout, 4 layers are fine
 - Less needed infrastructure: Number of power domains etc...
 - Digitising close to the detector typically reduces number of needed connectors

- Radiation hardness
- Power consumption
- Integration of analogue front end possible

Requirements

Development is driven by CBM time of flight detector

Parameter		
time resolution	≤ 25	ps
double hit resolution	\leq 5	ns
channel event rate	100	kHz
time over threshold measurement	≤ 1	ns
power consumption	\leq 30	mW/Ch
number of channels	65000	

Trigger-less / Event driven read out!

TDC Core

- ► 128 phase shifted clock signals by a delay locked loop ⇒ 50 ps binning
- ▶ 128 bit hit register encoded by 2 64 bit encoder \Rightarrow 1 event / 3.2 ns

< A >

э

- Separate encoders for leading and trailing edge
- Synchronised time stamp and epoch counter
- Derandomisation FIFO with 8 words depth

TDC Readout

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Additional Features

- SPI Master interface
 - Programming of threshold DAC in front end
- Test pattern generator
 - Asynchronous test patterns by free running ring oscillator
 - Independent test pattern for each channel
 - Test pattern length: 24 samples
- Pulse counter and dead time counter
- SEU counter (detected errors in hamming protected registers)
- On Chip diagnostics
 - Configurable test outputs for many internal signals (For lab-tests during development)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Error messages for various error states
- Bit error rate test on downstream link

Prototypes

- 2008: First Prototype
- ▶ 2012:

First fully equipped prototype GET4 V1.00 (subm.: V1.11)

- UMC 180 nm 1P6M CMOS technology
- ▶ 3240 × 2260 μm^2
- Power supply: 1.8V core, 3.3V IO

▶ 2013:

Bug-fixed version GET4 V1.20

Prototypes

Rate capability 32 bit read out mode

Rate capability: Comparison

data rate	max. event rate			
	24 bit mode		32 bit mode	
MBit/s	MHz/chip	MHz/ch	MHz/chip	MHz/ch
40	0.661	0.165	0.815	0.204
160	2.774	0.694		
320			7.194	1.799
640			13.284	3.321

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Enhancement by 32 bit mode: $\approx 30\%$

Linearity

NL [ps]

Times Resolution

= 2000

Pulse Width Measurement

Summary

- Rate capability: 3.3 MHz / channel or 13.3 MHz / chip
- Burst rate: 320 MHz / channel
- Time resolution: \leq 20 ps
- Double hit resolution: \leq 3.2 ns
- Pulse width measurement: Pulses ≤ 1 ns have been seen!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Power consumption: $\approx 27 \text{ mW/ch}$

Setup for Evaluation and Test

ロ ト ス 目 ト ス 目 ト ス 目 ト つ の ()

- For detector tests a TDC front end board was developed
 - Main board for four piggy boards
 - Each piggy board carries four GET4 TDC ASICs
 - ightarrow ightarrow 16 channels / Piggy board, 64 channels / main board
 - Successfully used in beam time with RPC detectors in Oct/2012

Readout with SYSCORE V2 board developed at Heidelberg

- Limited availability
- Very CBM specific back end (CBMnet)
- $\blacktriangleright \Rightarrow$ Current discussion: Using TRB3 for readout

Outlook

- ► A set of minor bugs was found in GET4 V1.11 ⇒ Bug-fixed version V1.20 submitted in Feb. 2013
- SEU-test with protons is planned for June at COSY
- Next beam tests with detector:
 - End of 2013 at COSY
 - Early 2014 at GSI
- Future plans
 - Read out controller ASIC for daisy chain read out of many GET4 ASICs
 - \Rightarrow Reducing number of needed connections
 - Integration of PADI- preamplifier and discriminator and GET4 on same Chip

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <