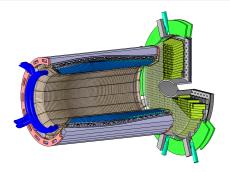
DCS for the electromagnetic calorimeter

Tobias Triffterer


Experimentelle Hadronenphysik
Ruhr-Universität Bochum

PANDA DCS EVO meeting 26th February 2013

The PANDA electromagnetic calorimeter

- Barrel plus forward and backward endcap
- ullet PWO scintillation crystals cooled down to $-25\,^{\circ}\text{C}$

Controller Area Network

- CAN bus should be used for future devices
- Chosen as default bus system for PANDA
- Two-wire data bus (differential signaling), data rate up to 1 Mbps
- Most devices of the EMC DCS use CAN bus
- ullet Custom hardware for CAN communication based on Raspberry Pi developed by Florian Feldbauer (ullet his talk)

Temperature and Humidity Monitoring

- Temperature and Humidity Monitoring Board for PANDA
- Developed by Florian Feldbauer and Patrick Friedel at RUB during their Master/Diploma studies
- Lightweight solution to monitor environmental conditions:
 - Temperature
 - Humidity
 - Air pressure
 - Flux in cooling tube
- Mountable close to/in the detector
- Generation 1 in use at Proto192 (FEMC) for > 3 years
- Gained lots of experience in these years
- Redesigned device to make it even better ⇒ Generation 2
- 10 THMPs for FEMC, 1 BEMC, ca. 20 barrel

The mainboard

- \bullet Powered by AT90CAN128 μ C (8 MHz)
- Connected via CAN bus
- Modular design:
 - Connectors for 8 piggyback boards (PBB)
 - Various types of PBBs for different tasks
- 8 channels per PBB \Rightarrow 64 channels per THM \overline{P}
- 14bit ADC (Maxim MAX1148)
- Channels multiplexed to ADC
- Low power consumption (< 3 W)

Temperature PBB

- Temperature measured by change of resistance of platinum
- Four-wire measurement
- Piggyback board drives a current of 1 mA
- Voltage drop over resistor (Pt100) is measured through separate wires
- Very precise measurement
- Independent of cable length
- Range -50° C to $+50^{\circ}$ C
- Resolution < 0.05 °C

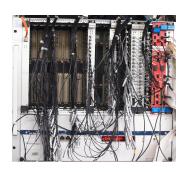
Other PBBs

- Humidity (HIH-4000) and pressure (MPX4115A)
 - Four wires, but no four-wire measurement
 - One wire to power the sensor
 - One wire for readout
 - Two wires common ground
 - Sensor response fed to ADC
- I/O board (planned):
 - Generic communication interface for e.g. relais, end-point switches, safety loops etc.
 - Remote-controllable using the CAN bus of the THM \overline{P}
- Generic interface for new PBB types:
 - New types of PBB without changes to the mainboard
 - PBBs can supply up to 4 V to the ADC
 - Two-wire interface (I²C) for direct communication to the μ C \Rightarrow may need firmware extension

EMC light pulser system

- Red, green and blue light pulser
- Blue pulse resembles scintillation light from PWO
- Developed by Christof Motzko at Ruhr-Universität Bochum
- Controlled via CAN bus
- Amplitude and frequency configurable
- One pulser for 400 crystals (⇒ 10 for FEMC, 1 BEMC, ~28 barrel)

iseg high voltage power supply


- Crate ECH238 houses up to eight HV modules
- Uniform CAN protocol for all module types
- Different modules of EHS and EDS series available:
 - Polarity, maximum output voltage and current up to ± 10 kV and 15 mA
 - For FEMC we use EHS F240p-F (+2 kV/4 mA), F8210p-F (+1 kV/8 mA), and F8620p-F (+2 kV/4 mA)

- $\Delta U = 0.01\% \cdot U_{\text{mom}} \oplus 0.02\% \cdot U_{\text{max}}$ (not for F8620p-F)
- $\Delta I = 0.01\% \cdot I_{\text{mom}} \oplus 0.02\% \cdot I_{\text{max}}$ (not for F8620p-F)

Wiener VME crate and cooling

- Crate temperature, power supply and fan speed monitorable via CAN bus
- Detailed voltage and current overview
- Remote control of crate
- Chillers for Proto192 controlled by RS232 bus
- Integrated into EPICS and CSS
- Number of cooling/LV devices yet to be determined

The End

Thank you for your attention!