

PANDA MDC Review Meeting 11/12/2024 GSI

Review of MDC - ASIC

Michele Caselle, Francesca Lenta, Gianni Mazza, Giulio Dellacasa and Olena Manzhura

on behalf of PANDA-MVD Collaboration

www.kit.edu

JINST Paper accepted

Authors: M. Caselle, O. Manzhura, D. Calvo, G. Dellacasa, S. Chilingaryan, F. Cossio, A. Kopmann, F. Lenta, G. Mazza, M. Peter, V. Sidorenko, T. Stockmanns, N. Tröll, K. L. Unger, H.-G. Zaunick and J. Becker and K.-T. Brinkmann

Title: Performance of the DAQ system of the PANDA Micro-Vertex Detector

Dear Michele Caselle,

We are pleased to inform you that your submission JINST_037P_1124 has been *accepted* for publication in JINST. To download the editor report, if available, please connect to:

https://jinst.sissa.it/jinst/author/docPage.jsp?docPgType=work&docId=JINST_037P_112

After clicking on the link "report" a pop up will open with a link to the pdf file.

IOPP website after your corrections have been implemented, provided that we receive them in time.

PREPARED FOR SUBMISSION TO JINST

- Performance of the DAQ system of the PANDA Micro-Vertex Detector
- M. Caselle, a.1 O. Manzhura, D. Calvo, G. Dellacasa, S. Chilingaryan, F. Cossio,
- 5 A. Kopmann,^a F. Lenta,^{b,c} G. Mazza,^{b,d} M. Peter,^e V. Sidorenko,^a T. Stockmanns,^f
- 6 N. Tröll, K. L. Unger, H.-G. Zaunick, J. Becker, K.-T. Brinkmann, for the PANDA

7 collaboration

- "Karlsruhe Institute of Technology (KIT),
- 9 Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- ^bNational Institute for Nuclear Physics Turin
- Via Pietro Giuria, 1 10125 Turin, Italy
- 12 ^cPolytechnic of Turin,
- 13 Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
- 14 ^dUniversity of Turin,
- Via Giuseppe Verdi, 8, 10124 Turin, Italy
- ^eJustus-Liebig-Universität Gießen,
- Erwin-Stein-Gebäude, Goethestraße 58, 35390 Gießen, Germany
- ¹ Forschungszentrum Jülich GmbH,
- 19 Wilhelm-Johnen-Straße, 52428 Jülich, Germany

E-mail: michele.caselle@kit.edu

 21
 Austractr: The Micro-Vertex Detector (MVD) is the innermost subdetector of the PANDA (anti

 22
 Poton ANnihilations at DArmstadt) detector at FAIR. Its microstrip sensors are read out by custom

 23
 front-end electronics called ToASt (Torino ASIC for Strip readout) [1]. The ToASt chips are locally

 24
 managed by an MDC (Module Data Concentrator) [2]. The MDC processes incoming event data

 25
 and forwards them to the off-detector readout cards based on the AMC (Advanced Mezzanine Card)

 26
 the MDC and the AMC readout cards based on the AMC (Advanced Mezzanine Card)

 27
 The complete readout chain, including the double-sided microstrip sensor read by the ToASt chips

 28
 and FPGA implementation of the MDC, was successfully tested during a 2023 beam test at

 20
 COSY (Forschungszentrum Julich). This proof-of-concept validation of the MDC logic paves the

 29
 way for the forthcoming ASIC version of the MDC, which is planned for submission in February

 2025. Extensive performance characterization of the current readout chain has been achieved

 2025. With the MDC-EPEGA ontically connected to an AMD-Xilinx ZCU102 evaluation card [4], which

Preamble, funding strategy, planning

Strategic Vision and Funding Scheme: "GSI-KIT Collaboration"

- The MVD, which will be placed in the innermost detector layer, will provide high resolution tracking for primary interactions and secondary vertices of short-lived particles and delayed decays. To complete the DAQ system of MVD two devices have been developing
- Module Data Concentrator (ASIC)
 - Financed by **BMBF** (05P21VKFP1)
 - KIT granted the neutral extension up to Sep. 2025

AMC Data Concentrator Board

- Development of a "common DAQ infrastructure" for current and future GSI experiments
 - Financed by **GSI** (80%) and **KIT** (20%)

Preamble, funding strategy, planning

Strategic Vision and Funding Scheme: GSI-KIT Collaboration

- The MVD, which will be placed in the innermost detector layer, will provide high resolution tracking for primary interactions and secondary vertices of short-lived particles and delayed decays. To complete the DAQ system of MVD two devices have been developing
- Module Data Concentrator (ASIC)
 - Financed by **BMBF** (05P21VKFP1)
 - KIT granted the neutral extension up to Sep. 2025

AMC Data Concentrator Board

Development of a "common DAQ infrastructure" for current and future GSI experiments

Financed by **GSI** (80%) and **KIT** (20%)

Towards to detector layout simplification

M. Case

Preliminary work before the ASIC development

Module Data Concentrator (TDR)

- Up to # 12 channel links from front-end interfaces
- Several data processing had been considered:
 - Mapping cluster, Hit Finder, Feature Extraction
- Large FIFO 32x512
- e-port based on GBTX, one link for data @ 160 Mbps

Preliminary work before the ASIC development

Module Data Concentrator (TDR)

- Up to # 12 channel links from front-end interfaces
- Several data processing:
 - Mapping cluster, Hit Finder, Feature Extraction
- Large FIFO 32x512
- e-port based on GBTX, one link for data @ 160 Mbps

Module Data Concentrator (Current design)

- Moving the data processing to more flexible programmable logic (off-detector), more flexibility and intelligent (ML) data processing on ZYNQ US+
- Reduce the complexity of MDC

Preliminary work before the ASIC development

Module Data Concentrator (TDR)

- Up to # 12 channel links from front-end interfaces
- Several data processing:
 - Mapping cluster, Hit Finder, Feature Extraction
- Large FIFO 32x512
- e-port based on GBTX, one link for data @ 160 Mbps

Module Data Concentrator (Current design)

- E-port based on LpGBT, two links operating @ 320 Mbps (total data throughput up to 640 Mbps)
- Reduce main FIFO 32x256 (less logic / area / power)

Preliminary work before the ASIC development

Module Data Concentrator (TDR)

- Up to # 12 channel links from front-end interfaces
- Several data processing:
 - Mapping cluster, Hit Finder, Feature Extraction
- Large FIFO 32x512
- e-port based on GBTX, one link for data @ 160 Mbps

Module Data Concentrator (Current design)

Increasing the number of input channels up to 16 links. Technically driven and highly advantageous, as it broadens the potential applications of the PANDA microstrip detector across various experiments

Data Concentrator - Requirements

Low-power, small-area, rad-tolerant CMOS ASIC

- High-Speed front-end interface:
 - Supports auto-detection and data link negotiation

Clock and Interface:

Master clock operation at 80/160/320 MHz via LpGBT and e-link-based interface (LpGBT compliant) for seamless integration

Robust Design Features:

Triple Modular Redundancy (TMR) logic for enhanced fault tolerance, built-in data consistency checks and command / configuration protection logic for reliable operation

Optimized for On-Detector Module:

Designed as a low-power device to accommodate limited cooling resources, and fully integrated solution tailored for ondetector environments.

Technology and Production:

Developed in the same CMOS technology as ToASt (UMC 110 nm), fabricated within the same engineering

Silicon Strip Detector

Complex detector modules for both barrel and disk

Barrel

11

- # 64 square sensors: 512 x 512 channel
- # 184 rectangular sensors: 512 x 895 channels

Disk

48 trapezoidal sensors: 768 channels per side
MDC data conc. (ASIC)

Strategy: one MDC version for all detector modules shapes with intelligent power management of no-active link and spares links

MDC vs detector module shapes One MDC version for all detector modules shapes

- The strategy is to keep the inactive readout channels as spare links. These can be used in case of physical damage or if additional data throughput is needed due to an increase in local data events.
- The employment of two MDC controllers (one per side) per each detector module

Module Shape	Position	Number of ToASt	#Channels	Occupancy	Additional links
Rectangular	Barrel	7 (p side) + 7 (n-side)	512 x 895	low or moderate	Spares links available (also for high occupancy scenario)
Square	Barrel	4 (p side) + 4 (n-side)	512 x 512		Several spares' links (per side)
Trapezoidal	Disk	6 (p side) + 6 (n-side)	768 x 768	Very high or moderate	Up to 4 spares links (per side)

MDC (Module data Concentrator)

MDC current version

Floorplan ASIC and connections

- Die size of 3.38 x 3.38 mm²
- Low-power CMOS technology
- Double Data rate (block), including the 8b/10b conversion and fast serializer, capable to operate up to 800 Mb/s
- Estimated power (*preliminary*) of 66 mW at a 333 MHz clock toggle rate @ 1.2V
- Area occupancy < 10 % for the logic</p>

The submission of the ASIC is booked for March (2025) in 110 nm CMOS

Expected occupancy

MVD internal note: https://panda-wiki.gsi.de/pub/Mvd/MvdPublic/PandaMVDnote-004.pd

Mcps → million counts per second	Barrel part	Forward part	Sensor level	Front-end level	Readout channel					
Pixel part										
Digitised hits N _{dig} / [10 ⁶]	$6.7 \mapsto 4.2$ (1.5 \mapsto 15) GeV/c	$16.6 \mapsto 32.2$ (1.5 \mapsto 15) GeV/c	≤ 0.89 $\langle \leq 0.21 \rangle$	≤ 0.29 $\langle \lesssim 0.04 \rangle$	$2 \cdot 10^{-4}$ $\langle 3.5 \cdot 10^{-6} \rangle$					
Average count rate $\langle \dot{N}_{dig} \rangle / [Mcps]$	$233 \vdash$ $(1.5 \mapsto 1)$	→ 364 5) GeV/c	≤ 8.9 $\langle \leq 2.1 \rangle$	≤ 2.9 (0.4)	$\lesssim 0.002$					
Expected data rate $\langle \dot{N}_{\rm sig} \rangle \cdot f_{\rm DAQ} / [MB/s]$	≲ 2	45 (12)	17 (2)	_						
Estimated peak rate $\langle \dot{N}_{\text{dig}} \rangle \cdot f_{\text{peak}} / [\text{Mcps}]$	-	-	-	> 4.0 < 14.5	$\lesssim 0.01$					
		Strip part								
Digitised hits $N_{dig} / [10^6]$	$21.1 \mapsto 17.6$ (1.5 \mapsto 15) GeV/c	$5.0 \mapsto 8.4$ (1.5 \mapsto 15) GeV/c	0.30 (0.10)	0.09 (0.02)	$\frac{8 \cdot 10^{-4}}{\langle 1.5 \cdot 10^{-4} \rangle}$					
Average count rate $\langle \dot{N}_{dig} \rangle \cdot f_{r/o} / [Mcps]$	418 ⊢ (1.5 → 1	→ 416 5) GeV/c	4.8 (≤ 1.6)	1.5 $\langle \leq 0.3 \rangle$	$\lesssim 0.013$					
Expected data rate $\langle \dot{N}_{\rm dig} \rangle \cdot f_{\rm r/o} \cdot f_{\rm DAQ} / [MB/s]$	≲ 2	2500	29 (10)	9 (2)	-					
Estimated peak rate $\langle \dot{N}_{dig} \rangle \cdot f_{r/o} \cdot f_{peak} / [Mcps]$	-	-	-	> 2.0 < 5.5	> 0.02 < 0.07					

Table 6.3: Main results of the count rate study performed with 2 million DPM events. Average count rates are obtained with the nominal interaction rate of $2 \cdot 10^7 \text{ s}^{-1}$, i.e. $\langle \dot{M}_{eq} \rangle = 1 \circ N_{eq} \cdot \text{s}^{-1}$. Given numbers at sensor, frontend and channel level represent the maximum values obtained for a single element. Mean values of all elements in the corresponding setup are indicated with $\langle \dots \rangle$.

Source TDR

16

High luminosity scenario: 2 10⁷ interaction/s is expected the maximum count rate sensor (module) 4.8 Mcps in the hot region, factor of 1.6 cnt/hit, which considers an induced charge sharing between neighbouring channels (from TDR)

Occupancy count rate (worse case for forward module) Mhit/s / f_{DAQ} = 4.8 Mcps / 39 kf/s = < 124 cnt/frame</p>

- Equivalent to a data rate of < 155 Mb/s</p>
- The MDC has been designed to support a maximum data rate of = 640 Mb/s * 8/10 (encoding) = **512 Mb/s** (two outputs), or 320 Mb/s * 8/10 = **256 Mb/s** (one output)
- It enhances flexibility in designing future detector modules, enabling operation under high-occupancy conditions. This capability is particularly beneficial for large-area hadron-beam therapy and for deploying microstrip detectors in AMBER experiments at CERN's SPS facility.

MDC Core logic

MDC Core logic

ASIC architecture

MDC/ToASt reset and initialization

Reset signals, reset tree, initialization and default configuration

PonRST: only to reset and initialize the reset logic

MDC Review Meeting Dec. 11 (2024)

MDC – **Front-End Interface**

Readout channel

High efficiency, low-power, small-area logic

Features:

- Auto-detection/negotiation of active data links, training patter fully programmable
- No-active links are kept in low-power mode
- Density < 50 %</p>
- FIFO by low-leakage transistor, Faraday memory generator
- Estimated power of 0.8 mW @ 1.2V

Readout channel

High efficiency, low-power, small-area logic

FIFO channel:

- Width: 32-bit, Depth: 64
- "Almost Full" threshold set at 56 entries
- "Full" threshold set at 60 entries
- Capacity: Sized at twice the capacity of the ToASt event FIFO

FSM READ:

Transfer the event temporarily stored in the channel FIFO to the MUX logic

Channel negotiation and lock logic

- Training patter (configurable by register)
- Channel LOCK

- Checks the incoming ToASt packets (HEADER->SYNC->DATA->TRAILER)
- Save the data in the channel FIFO
- Provides the number of data words present (frame)

- COUNT FIFO FULL: Tracks the number of occurrences where the FIFO reaches a FULL state
- COUNT_DATA_CNT_ERROR: Records the instances where the number of data words differs from the count specified in the ToASt trailer field
- **COUNT ERRORS**: Counts the occurrences where HEADER->SYNC->DATA TRAILER packets are not correctly formatted or processed

Logic tested during beam tests

23

M. Caselle

Readout channel – FSM-channel

Post-layout simulation

Readout Command

Int_ERRORS[3:0]

4NT_FIF0_FULL[3:0]

📬 Status_Cł

'h x

HEADER/DATA/TRAILER are

Data to MUX readout

Front-End interface elink 16 channels : Upstream Link 0 (cmd, cfg, status) cmd, conf, status 2x 320 Mb/s readback Clock Cmd, configuration e-link Front-end configuration 8 Downstream **Global Registers** logic (Dataln) Calibration & Test Pulse

Sensor and front-end

DC ASIC architecture

E/O link interface

MDC - Configuration Registers

User configuration space (commands / configurations / status)

MDC - Configuration Registers User configuration space (commands / configurations / status)

Register	Read/Write access	Register global address	Description
MDC_ID	R/W	0x00	Detector module address (ID)
MDC Command	R/W	0x01	Commands from off-detectors (see next slides)
FIFO_FULL_COUNTS	R	0x02	Number of times that the Main fifo is fully (automatically sent to off-det.)
MDC Status 1	R	0x03	Status 1 (see next slides)
Number of Test Pulse	R/W	0x04	Number of test pulse SET
Test Pulse delay (6.25 ns steps)	R/W	0x05	Delay and polarization Test pulse
Number of Test Pulse acquisition acquired	R	0x06	Number of test pusle acquired
ToASt_Configuration	R/W	0x07	ToASt configuration instruction
ToASt_Configuration_ReadBack	R	0x08	ReadBack the configuration DATA
ToASt_Configuration FSM status	R	0x09	Status 4 (see next slides)
Status channel 0	R	0x0A	Status_CH_0 (see next slides STATUS_CH)
Status channel 1	R	0x0B	(see sheet STATUS_CH)
Status channel 2	R	0x0C	(see sheet STATUS_CH) - See previous slide
Status channel 14	R	0x18	(see sheet STATUS_CH)
	R		
Status channel 15	R	0x19	(see sheet STATUS_CH)
TX_Out_inv_settings	R/W	0x1A	Data links inversion
CfgRX_TX_settings	R/W	0x1B	Cfg_TX output current control, Cfg_TX inversion and Cfg_RX inversion
			Upstream LpGBT current control, Upstream GBT inversion, Downlink
GBT_CLK_settings	R/W	0x1C	inversion, clock_out current control and clock_out inversion
SYNC_PATTERN (MSB)	R/W	0x1D	Drogrommable training nattorn
SYNC_PATTERN (LSB)	R/W	0x1E	

User configuration space (commands)

Same definition of beam test system

Karlsruhe Institute of Technology

User configuration space (commands)

Same definition of beam test system

User configuration space (status and errors)

Karlsruhe Institute of Technology

STATUS_1: 16 bits channel locked (active high)

	Status 1 (channels looked)														
	15	14 1	.3 12	! 11	1 10	0	9	8	7	6	5 4	1 :	3	2 1	1 C
Channel 15	Channel 14	Channel 13	Channel 12 locked	Channel 11	Channel 10	Channel 9	Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1	Channel 0
locked	locked	locked	Channel 12 locked	locked	locked	locked	locked	locked	locked	locked	locked	locked	locked	locked	locked

STATUS_CH, 16 status channel registers (one per each channel)

Status CH										
22 21	20 19	18 17 16	15 14 13 12	11 10	98	76	5	4 3 2	2 1	0
FSM_CH	COUNT	I_FIFO_FULL	FIFO_COUNT			COUNT_DATA_CNT_ERROR	COL	JNT_ERRORS	FIFO_FULL	FIFO_EMPTY

STATUS_CFG: configuration is pending, tracks the number of errors encountered during the ToASt CFG

Status CFG ToASt Configuration											
15 14 13 12	11	10	9	8	7	6	5	4	3	2	1 0
Number of Errors during configuration		FSⅣ	1_RX_	_CFG	ReadBack_FIFO_full	sync_FIFO_full	sync_FIFO_empty		FSM	_SHIF	т

Front-End interface elink 16 channels : Upstream Link 0 (cmd, cfg, status) cmd, conf, status 2x 320 Mb/s readback Clock Cmd, configuration e-link Front-end configuration Downstream **Global Registers** logic (Dataln) Calibration & Test Pulse

MDC - Configuration Registers

User configuration space (commands / configurations / status)

Sensor and front-end

DC ASIC architecture

E/O link interface

Without well-designed and robust configuration logic, the detector may produce not consistent data and/or serious consequences in the functionality

Commands and configuration logic

Simulations

Front-End interface elink 16 channels : Upstream Link 0 (cmd, cfg, status) cmd, conf, status 2x 320 Mb/s readback Clock **Cmd**, configuration e-link Front-end configuration Downstream **Global Registers** logic (Dataln)

Sensor and front-end

DC ASIC architecture

M. Caselle

E/O link interface

Karlsruhe Institute of Technology

MDC - Configuration Registers

User configuration space (commands / configurations / status)

On-detector calibration logic Programmable test pulse sequence

A fully programmable test pulse sequence to speed up the S-curve characterizations and front-end test

Test Pulse

36

Post-layout simulation

Test Conditions: 8 ToASt chips with 2 data links enabled, MDC configured with 2 data links enabled

Results: The MDC demonstrated the capability to sustain continuous occupancy exceeding 50% per ToASt chip

Test Pulse

Post-layout simulation

On-detector calibration logic

Programmable delay between the trailer and active edge

Precisely calibrate the Time of Arrival (ToA) for all ToASt chips using a highly accurate reference

Verify that all ToASt chips are properly synchronized in timing

D 100 TEST PILSE LIGIC				
<pre>@ # fr_of_TP_frame[7:0]</pre>	'd 255	255		
🕀 🧰 test_pulse_dly[15:0]	'h 8005	9005		
	1			trailor
🚛 trailer_sync	1			lianei
Enable_TP_readout	0			
@ •cquired_by_TP[7:0]	'd 1	0		1
	1			Test pulse
e 📾 076,10010				
D GE HECHESET_LOCIC				
- COCK	1			
B 4 BataOut_32[31:0]	'h 50100000	OCCCCCCF 50	100000	ACCARAGEF CCG88888
B TATA_COUNT_tmp[7:0]	0 b'	0		
🕀 🌯 4te_Data_FIF0(31:0)	'h 00000000	00000000		
	0			
50. 50 ANTO CHT EERCE(7.0)	'h 0	0		
minicul Exercite to 1		*		

TP delay set to = 5,

equivalent to TP delay = $0.05 \ \mu s$

⊕ → fr_of_TP_frame[7:0]	'd 255	255		
🕀 🐳 test_pulse_dly[15:0]	'h 81FF	81FF		
	1		trailer	
	0		tranci	
Enable_TP_readout	0			
⊕ • oquired_by_TP[7:0]	'd 1	0		1
	1			Test pulse
C READOUT_CHANNEL				
EIII LOCK	1			
🕀 🌆 DataOut_32[31:0]	'h OCCCCCCF	OCCCCCCF	OCCCCCCF	
🕀 🌆 DATA_COUNT_tap[7:0]	0 b'	12 0		
B 4te_Data_FIF0[31:0]	'h 00000000	00000000		
MR_FIF0	0			
Image: ATA_CNT_ERROR[3:0]	'h 0	0		
ER TOUNT EPROPS[3+0]	'h 0	0		

TP delay set to
$$= 511$$
,

equivalent to TP delay = $3.213 \,\mu s$

TP delay step of 6.25 ns \rightarrow see next slides for ToA testing in the continuous integration setup

Karlsruhe Institute of Technology

MDC – Main readout unit

Developed for high-data throughput

Sensor and front-end

DC ASIC architecture

E/O link interface

MDC – Main readout unit

Developed for high-data throughput

- A READY flag is asserted as soon as data becomes available in the FIFO channel
- Channels are read out sequentially in the order: $ch0 \rightarrow ch1 \rightarrow ch2 \rightarrow ... \rightarrow ch15$
- Channels that are not locked or not present are automatically skipped

Fixed occupancy: close to 50 % per ToASt, readout of num. 8 ToASts.

Channel ready for readout

An additional delay is introduced between the readout of two consecutive channels to prevent the FIFO full condition

MDC – Stress testing

Pushing the system to peak performance

Number of 20 cnt per link \rightarrow equivalent to a ToASt occupancy of 62.5%, with 8 ToASt (supermodule)

data rate of = 40 * 8 * 32 * 39 kpfs = 400 Mb/s

LOCK	1											
- 🌆 DataOut_32[31:0]	'h OCCCCCCF	OCCCCCCF))))))))))))))))))))))))))))))))))))))	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX								
DATA_COUNT_tmp[7:0]	'd 21											
- 🌆 •te_Data_FIF0[31:0]	'h 00000000	0000000)	0000000								
WR_FIF0	0											
ATA_CNT_ERROR[3:0]	'h 0	0										
- The COUNT_ERRORS[3:0]	'h 0	0										
- 🌆 COUNT_FIFO_FULL[3:0]	'h 0	0										
- 🌆 Read_Data_FIF0[31:0]	'h 50140000	50140000	50140000	50140000								
	0											
	'h 205800	205800	205800	205800								
locked_chs_reg[15:0]	'h FFFF	FFFF										
FIFO_READY[15:0]	'h FF80	(FC+ (F8+ (F0+ (E0+ (C0+ (80+ (0000)(FF+ (FF+ (FF+ (FF+)(FF+)(FF+)(FF+)(FE+)(FC+)(F8+)(F0+)(E0+)(E0+)(80+)(0000	KFF (FFF (FFF) FFF) FFFF) FFF) F								
- 🌆 CHIP_ID[4:0]	'd 7	10 11 12 13 14 15 0	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0	1 2 3 4 5 6 7 8 9 10 11 12								
I 🌆 FSM_DATA_READ[5:0]	'h 11	(17)(19)(1B)(1D)(1F)(21)(01	05 07 09 08 00 0F 11 13 15 17 19 18 10 1F 21 01	05 07 09 08 00 0F 11 13 15 17 19 19								
data_valid[15:0]	'h 0000	X00+X00+X00+X00+X00+X00+X000)(00+)(00+)(00+)(00+)(00+)(00+)(00+)(00									
	'h 00000000	00+ 100+ 100+ 100+ 100+ 100+ 1000	00+ 100+ 100+ 100+ 100+ 100+ 100+ 100+	00 ¥ 400 ¥ 400 ¥ 400 ¥ 400 ¥ 400 ¥ 400 ¥ 400 ¥ 400 ¥ 400 ¥ 400 ¥ 400								
	0											
fifo_counter[7:0]	'd 9	n an	an 🕘 mai 🕘 mai 🗧 man 🗧 mam 🗧 mam 🗧 man 🤞 mai na sanan sa									
- 🌆 <_FULL_COUNT[7:0]	'h 00	00										
	0		Additional margin still available for further entimization or									
	'h 0000	Additional margin still available for further optimization or										
- 4_FULL[15:0]	'h 0000	m norformanco onbancomento										
MDC_CORE Logic			penormance enhancen									
text in the second seco												

MDC – Main readout unit

MDC configuration of rectangular detector module

ToASt occupancy of 30%, only 7 ToASt with one link activated

LOCK	1			
DataOut_32[31:0]	'h OCCCCCCF	OCCCCCCF	()()()()()()()()()()()()()()()()()()()	0000000000
DATA_COUNT_tmp[7:0]	'd 0	21		
<pre>4te_Data_FIF0[31:0]</pre>	'h 00000000	00000000		
WR_FIF0	0			
ATA_CNT_ERROR[3:0]	'h 0	0		
COUNT_ERRORS[3:0]	'h 0	0		
The COUNT_FIFO_FULL[3:0]	'h 0	0		
Read_Data_FIF0[31:0]	'h 00000000	50140000	50140000	501400
🔤 Data_Valid_FIF0	0		<u> </u>	
Status_CH[22:0]	'h 100001	205800	205800	205800
Iocked_chs_reg[15:0]	'h 1555	1555		
FIF0_READY[15:0]	'h 0000	0000)(1554)(1550)(1540)(1500)(1400)(0000	1554
CHIP_ID[4:0]	'd 0	• >	2 4 6 8 10 12 0	2
FSM_DATA_READ[5:0]	'h 01	01	07 08 0F 13 117 118 01	07
data_valid[15:0]	'h 0000	0000)(0000))(0000))(0000))(0000))(0000))(0000	(0000)
<pre>4te_Data_FIF0[31:0]</pre>	'h 00000000	00000000	000> 000> 000> 000> 000> 000> 000>	000
- 🔤 WR_FIFO	0			
<pre>fifo_counter[7:0]</pre>	'd 0	0		
<pre>FULL_COUNT[7:0]</pre>	'h 00	00		
- 🗇 <_FULL_main	0			
FULL_CH_reg[15:0]	'h 0000	0000		

Channels that are not present are automatically skipped, with only Link 0 of the ToASts being read out

MDC – Main readout unit

MDC configuration of trapezoidal detector module

ToASt occupancy of 60%, 6 ToASt, two links per ToASt activated

Large margin for further optimization or performance enhancements

elink 16 channels : e-link Upstream Link 0 Upstream (cmd, cfg, status) logic cmd, conf, status 2x 320 Mb/s readback Clock Cmd, configuration e-link ownstream Downstream **Global Registers** logic (Dataln)

Sensor and front-end

DC ASIC architecture

E/O link interface

MDC - Configuration Registers

User configuration space (commands / configurations / status)

MDC (Module data Concentrator)

Intelligent Data Distribution System Across Upstream Links

- In case of high data occupancy, data are evenly distributed across both links, as illustrated below
- In case of small amount of data, data are transmitted through link 0, avoiding the need to duplicate header and trailer packets
- Capable of sustaining a very high occupancy rate

Developed by Giulio Dellacasa

Developed by Francesca & Michele

Karlsruhe Institute of Technology

Optimization

Comparison w/wo faraday memories

Drastic reduction of power consumption and occupancy

PANDA CM 2024 1

Estimated power consumption: 165 mW @ 1.2V Density: 40%

Karlsruhe Institute of Technology

Estimated power (preliminary): 66.64 mW @ 1.2V Density: < 10 %

X 2.5

Timing verification Post-layout, final chip

all | reg2reg | default |

| 0.026 | 0.026 | 0.000

0.000

0.000

0.000

WNS (ns):| 0.026 | 0.026 | 0.000 TNS (ns):| 0.000 | 0.000 | 0.000

All Paths: | 14769 | 14769

Reaselle@ipeasic1:~/PANDA/innovus/reports/MDC_TOP_DDR/timeDesign

time design Summary

Setup mode

|av normal max

|av normal min

Violating Paths:

	PANDA mcaselle@ipeasic1:~/PANDA	/innovus/repoi	ts/MDC_TOP_D	DR/timeDesign	1
refix 5_ro	<pre>Generated by: 9 OS: 9 OS: 9 Design: 9 Command: ng_debug_report -report 9 debug_report -report -report 9 debug_report -report -report</pre>	Cadence In Linux x86 Fri Dec o MDC_TOP_DI time_desig ct_only	nnovus 21. 64(Host I) 618:18:44 DR gn -sign_o:	35-s114_1 0 ipeasic1 2024 ff -hold -e	.ipe.kit.edu) expanded_views -
	time_design \$	Summary			
_					Hold
0	Hold mode	all	reg2reg	default	
	WNS (ns): TNS (ns): Violating Paths: All Paths:	0.186 0.000 0 14769	0.186 0.000 0 14769	0.000 0.000 0	←
		0.340 0.000 0 14769	0.340 0.000 0 14769	0.000 0.000 0	
	+ avnormal_min 	0.186 0.000 0 14769	0.186 0.000 0 14769	0.000 0.000 0 0	+
	+ av_normal_pwr 	0.252 0.000 0 14769	0.252 0.000 0 14769	I 0.000 I 0.000 I 0 I 0	+
	av_normal_max 	0.582 0.000 0 14769	0.582 0.000 0 14769	0.000 0.000 0 0 0	+

8	мг				00	tina [11
	+-		-+-		-+-		-+	
		14769		14769				
av normal pwr		3.411		3.411		0.000		

3.660 | 3.660

Setu

Internal clock tree distribution

Max time skew between logic nodes

Clock propagated to final logic node "load" with a limited time skew

Integration and test of MDC deployed on FPGA

51

Complete Readout Chain: All main HW components integrated: ToASt chips (w/wo sensors), MDC (FPGA-based), LpGBT and VTRx+, off-detector card (ZCU102 emulating AMC cards)

MDC qualification & test

- Preliminary FPGA firmware implemented on the off-detector system
- Software & low-level drivers deployed on PetaLinux (FPGA-ZYNQ platform)

M. Caselle

MDC qualification & test

Assessment of Digital Performance and ToASt System Integration

- Objective: Measure the data occupancy that the MDC can handle using real ToASt chips connected to the MDC-FPGA implementation (same Verilog source) and read out via LpGBT.
- Test Setup: Two ToASt chips configured in a small-detector module setup, four links operating in parallel.
- Method: Inject test pulses across all channels on both ToASt chips at 100% occupancy, each ToASt chip operates with two active links operating at their maximum frame rate of 39.06 kfps

Num. of ToASt Framerate
 Data generated is = 64 x 2 x 32 x 39 kfps ~ 160 Mb/s
 Channels/ToASt 32 bit/data

This corresponds to the maximum data rate of **155** *Mb/s* expected for the hot module in a high-luminosity scenario, handling 2×10^7 events

The plots are consistent and identical for every sequence.
 AMDC qualification action at the province of the plots are consistent and identical for every sequence.
 Data throughput test

Test pulse sequences were repeated several hundred times

- No data loss was detected across all test pulse sequences.
- The plots are consistent and identical for every sequence.
- Achieved a sustained data rate of approximately 160 Mb/s.

Courtesy: Olena

The MDC architecture, connected to the LpGBT, can sustain a data rate equivalent to that expected from the hot detector module in a high-luminosity scenario

Test pulse sequences were repeated several hundred times

TP delay set to 5 \rightarrow ToA of ~ 65 cnt

TP delay set to $5 \rightarrow$ ToA of ~ **90** cnt

Courtesy: Olena

Test pulse sequences were repeated several hundred times

TP delay set to 5 \rightarrow ToA of ~ 65 cnt

TP delay set to 50 \rightarrow ToA of ~ **140** cnt

Test pulse sequences were repeated several hundred times

TP delay set to 5 \rightarrow ToA of ~ 65 cnt

TP delay set to 200 \rightarrow ToA of ~ 570 cnt

Courtesy: Olena

Test pulse sequences were repeated several hundred times

TP delay set to 5 \rightarrow ToA of ~ 65 cnt

TP delay set to 500 \rightarrow ToA of ~ **1340** cnt

Conclusions

What's next

- Simulation: MDC sustains 62.5% occupancy per ToASt, with 8 activated ToASts and two links each (data rate > 400 Mb/s)
- Performance: The MDC-FPGA, integrated with ToASt, has demonstrated its ability to operate at over 160 Mb/s, matching the maximum data rate required under high-luminosity conditions in the hot-detector region at PANDA
- Versatility: MDC has applications beyond PANDA, suitable for various experiments.
- ASIC implementation: The ASIC version is fully routed with no timing violations and low power consumption
- Next Steps: A verification with ToASt/Gianni is needed before submission, planned for March 2025

Thank you for your attention

and the second

aninin

feedback Open discussion

User configuration space (status and errors)

Status CH_OR												
22 21	20 19	18 17 16	15 14 13 12	11 10 9	8	76	5 4 3	2 1	0			
FSM_CH	COUN	T_FIFO_FULL	FIFO_COUNT		COUNT_DATA_CNT_ERROR		COUNT_ERRORS	FIFO_FULL	FIFO_EMPTY			

Provides DATA_COUNT_tmp counts the number of data received in one frame (between HEADER and TRAILER)

- COUNT_FIFO_FULL: Tracks the number of occurrences where the FIFO reaches a FULL state
- COUNT_DATA_CNT_ERROR: Records the instances where the number of data words differs from the count specified in the ToASt trailer field
- COUNT_ERRORS: Counts the occurrences where HEADER->SYNC->DATA_TRAILER packets are not correctly formatted or processed
- \rightarrow copy to MDC trailer, sent together the data

MDC/ToASt reset and initialization

Post-layout simulation

PonRST: only to reset and initialize the reset logic

	'h 100	001	(000)(002)(000	(100 (000 (►)(0	00 (004 (000)
	1 0				
	0				
	0				
	0				
MDC_PonRst	0				
MDC_reset_Sync	0	i i			
SyncRst_to_ToASt	0				
	0				
□ ■ FSM_RST[1:0]	'h 1	0 1	(3)(1)		2 1
	'h 24F	001	Y 24F		

PonRST is low (RC)

Commands and configuration logic

ToAst configuration and "error protection" architecture

Karlsruhe Institute of Technology

- Procedure like beam test setup
- MDC receive the configuration sequences (readout back on the configuration commands, possible)
- Configuration sequence checked by dedicated logic
- Status_CFG [15:12] counts the number of wrong configuration sequences or commands
- Configuration sequences, saved in FIFO, FIFO depth is . The large FIFO provides the possibility to optimize the configuration of long sequences, multiple ToASt global/local registers in less time.
- For every writing operation on global/local ToASt register, the automatically readback is performed
- In case of errors the information is sent to the counting room
- Broadcast or individual ToASt configuration operation are both implemented (like beam test setup)

🛣 Waveform 1 - SimVision	- 0 ×
Eile Edit ⊻iew Explore Format Simulation Windows Help	cādence"
\$e te	🖌 🇳 - 🕂 Send To: 🗽 🚝 🗟 🗱 📰 📰 🔳
Search Names: Signal 🔍 🔟 🆍 🎁 Search Times: Digital Value 🔍 🔟 🏥	
RyTimeA = 3515.12448: I us R R	Time: 📲 3453.556193us : 🗹 🌨 🗧 📕
En TimeH-Baseline = 25,008132us Baseline = 3489,51629us Ex TimeA = 3515,124482us	
Name O▼ Cursor O▼ 3460us 3480us 3500us 3520us 3540us 3560us 3560us 3560us 3560us 3600us	3640us 3660us 3680us 3700 3700
1 I I I I I I I I I I I I I I I I I I I	
FIFO_READY[13] 1	
FIF0_READY[10] 1	
□ - □ - □ - □ - □ - □ - □ - □ - □ - □ -	
⊕-% <te_data_fif0[31:0] 'h="" 00000000="" 1111[0="">111111100] 0000000 0000000000000000000</te_data_fif0[31:0]>	
⊕-‰ fifo_counter[7:0] 'd 0	
E	
E 🕾 ▲_FULL[15:0] 'h 0000 0000	
	3000
	4 objects selected

Detection of anomalies and errors

Continuous readout operation also in presence of critical conditions

- Several critical errors could compromise the detector readout, for example, SEU (MDC, ToASt), high occupancy due to a significant number of fake or noisy channels, etc.
- The goal is to develop a continuous readout mechanism capable of sending information of the anomalies and errors to an off-detector location.
- High-granularity detector recovery mechanism at level of off-detector

	I	No erro	ors				\frown		K	F	noma	lies de	etetcts	s (main	fifo full)
10000 501	60000 (50160000) 500E0000) (500E0000	501A0000) (501A0000) (50110000) (50110000) (50150000	50150000) (50180000	50180000	00000000			
	ſ					_N				_11					
:A0000 🚺 SEE	A0000 🚺 5EEA0000	5EEA0000	5EEA0000	SEEA0000	5EEA4000	5EEA4000	5EEA4000	5EEA4000	5EEA4000	5EEA4000	5EEA4000	5EE14000			
						אמתתתת או									
O almost full															• • •
ta from To <mark>ASt</mark>	χοοοοοοο) (+) (+) (+) (+) (+)	c• (c• (c• (c• (c	• <u>)</u> (c•) (c•) (c	•)(c•)(c•)(c•)(c•	<u>)</u> (C►)(50110000		the	ogic re	educe	s the a	moun	t of da	ata it se	ends to th
ta valid to <u>be sent</u>									ntina r	oom ir	ordar	to sat	tiefv th	na data	through
C TRAILER (status)	(5) (5EE44000					5EEA40	00	COUI	iung iv			10 30	usiyu	ie uala	unougnp
								requ	iireme	nts					
		0000000					Vanagagaga	- /							
		10268268					V 00000000		Main	fifo	full fle	n			

66

Karlsruhe Institute of Technology