

The result of ⁴⁸Ca + ²⁴³Am reaction on SHANS2

Zaiguo Gan^{1,2,3}, Zhiyuan Zhang^{1,3}, Minghui Huang^{1,2,3}, Chunli Yang¹, Jianguo Wang^{1,2}, Long Ma^{1,2}, Huabin Yang¹, Xiaolei Wu^{1,2}, Mingming Zhang¹, Yulin Tian^{1,2}, Yongsheng Wang¹, Junyin Wang¹

¹ Institute of Modern Physics, CAS, Lanzhou, China ² Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China ³ School of Nuclear and Technology, Univ. of Chinese Academy of Sciences, Beijing, China

Using the 48 Ca beam provided by the CAFE2 at IMP, the experiment of 48 Ca+ 243 Am was performed at SHANS2. The α -decay chains of the 288 Mc and 287 Mc were successfully observed in the experiment, and for the first time measured the last two chain members 268 Db and 264 Lr, during the beam-stopped period. Systematic measurements were performed on the production cross-section of 288 Mc. Notably, the magnetic rigidity parameters used in the experiment differed from values reported in literature. This parameter is crucial for superheavy element synthesis and required special attention during the experiment.

References

- [1] Yu.Ts.Oganessian et al., Phys.Rev. C 106, 064306 (2022)
- [2] J.M.Gates et al., Phys.Rev. C 92, 021301 (2015).
- [3] J.M.Gates et al., Phys.Rev.Lett. 121, 222501 (2018)
- [4] D.Rudolph et al., Phys.Rev.Lett. 111, 112502 (2013).