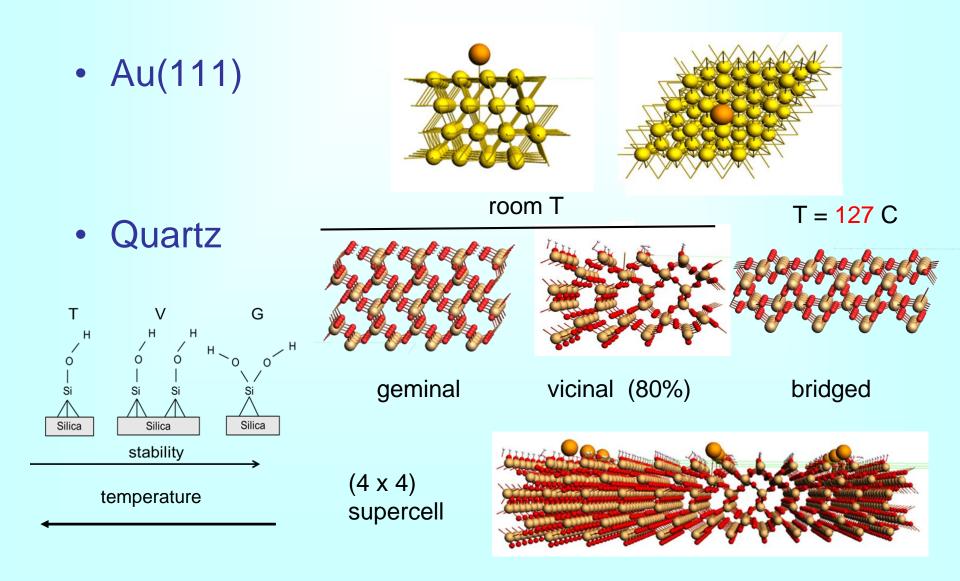

Theoretical Studies of Adsorption Properties of Group 15, 16 and 17 Elements, Bi/Mc, Po/Lv and At/Ts, on Surfaces of Gold and Quartz

V. Pershina *GSI, Darmstadt, Germany*

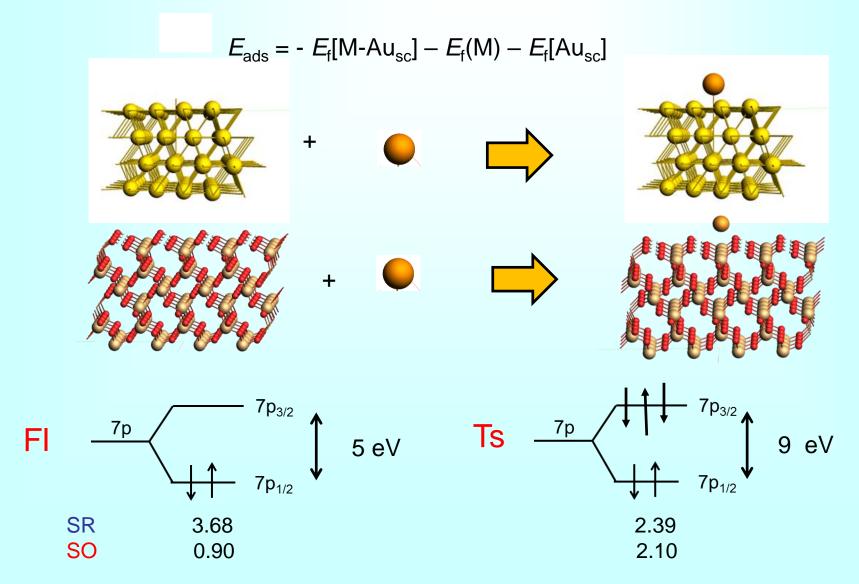
M. Iliaš HIM, Universität Mainz, Germany

Valence AO Orbitals

Theoretical Studies of Properties and Volatility of SHEs


- Formation of MO, MO₂ and M(OH), etc. in the atmosphere of O₂, H₂O and H₂
 - reaction energies
 - properties of atoms/molecules (geom., IP, α, μ)
- Predictions of adsorption properties of M, MO, M(OH) on surfaces of quartz and gold
 - structures
 - adsorption energies
 - analysis of bonding

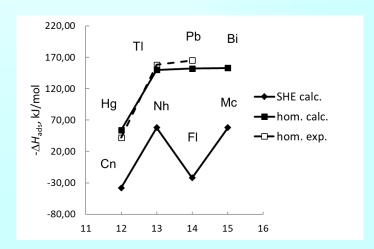
Methods and Softwares – Molecular Codes


Molecular

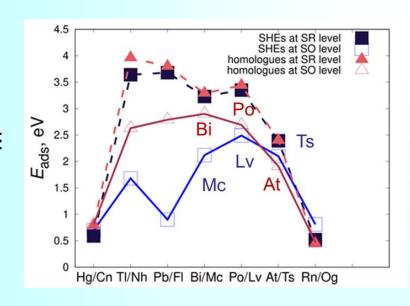
- ADF (SCM)
 - 2c-DFT; SR and SO relativity; all-electron; various E^{xc};
 STO basis sets for SHEs
 - energy, properties, fast geometry optimization
 - commercial & host-locked
- DIRAC
 - 2c/4c-DFT + CC ab-initio; all electron, Gaussian orbitals; poor geometry optimization, free-of-charge
- Solid state periodic
 - SCM BAND
 - 2c-SR and SO relativity, all electron, fast geometry optimization, full relaxation, dispersion-corrected Exc , commercial & host-locked

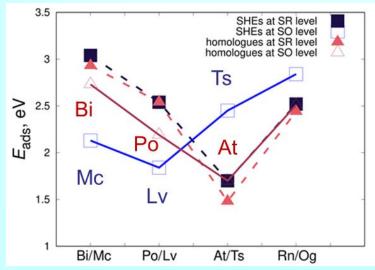

Modeling of Gold and Quartz Surfaces

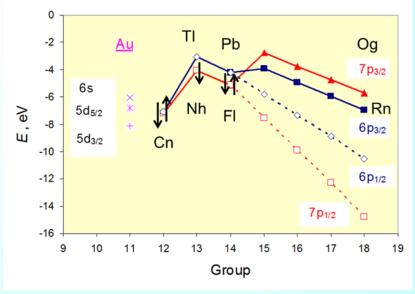
Calculations of E_{ads} (in eV) of M on Au(111) and Quartz Surfaces



Calculations of E_{ads} of Group 12-15 Elements on Gold and Quartz


M/Gold Bi Pb 300,00 ΤI $-\Delta H_{ads}$, kJ/mol ►SHE calc. Nh 200,00 hom. calc. Hg FΙ SHE exp. 100,00 **–**□– hom. exp. Cn 0,00 11 12 16 13 14 15


(revPBE-D3BJ) M/Quartz

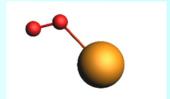


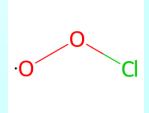
V. Pershina, M. Ilias, A. Yakushev, *Inorg. Chem.* **60**, 9796 (2021) Experiment; A. Yakushev, et al. *Frontiers*, 2024

Adsorption of SHEs on Au(111) Surface

$E_{\rm ads}$, eV						
2.90	>	Мс	2.12			
2.69	>	Lv	2.49			
1.91	<	Ts	2.10			
2.73	>	McH	2.13			
2.19	>	LvH	1.84			
1.70	<	TsH	2.45			
1.92	<	TsOH	2.00			
	2.69 1.91 2.73 2.19 1.70	2.90 > 2.69 > 1.91 < 2.73 > 2.19 > 1.70 <	2.90 > Mc 2.69 > Lv 1.91 < Ts 2.73 > McH 2.19 > LvH 1.70 < TsH			

[A. Rhyzhkov, V. Pershina, M. Ilias, et al. PCCP 2023]

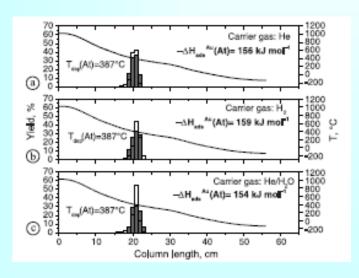

Adsorption of Po Species on Quartz


Species	Po					
	Experiment					
	Quartz	Conditions	Ref.			
М	85 ± 3	Ar/H _e /N ₂	Gärtner 2001			
	85	He	Vogt 1996			
	85 ± 9	H ₂	B. Eichler 1976			
	125 - 133 ± 5	H ₂	Maugeri 2014			
	133 ± 5	H ₂	Maugeri 2014			
	124 - 137 ± 5	He	Mauger 2014i			
МО	236	O ₂	Maugeri 2014			
MO ₂	123	He	Gäggeler 1985			
	215 ± 5	O_2	Maugeri 2014			

Reaction Energies (in eV) for Group 17 Elements with O₂ and H₂O (n/o)

At		Ts	
Reaction	Energy	Reaction	Energy
At + O = AtO (known for Br)	-2.679	Ts + 0 = Ts0	-2.748
$At + 1/2 O_2 = AtO$	0.289	$Ts + 1/2 O_2 = TsO$	0.345
$At + O_2 = AtOO (R)$	-0.139	Ts + O ₂ = TsOO (R)	-0.302
$At + O_2 = OAtO$	0.671	$Ts + O_2 = OTsO$	0.853
At + OH = AtOH	-2.115	Ts + OH = TsOH	-2.272
$AtO + H_2O = AtOH + OH$	1.204	TsO + H ₂ O = TsOH + OH	1.117

At and Ts should not react with O₂ and H₂O forming MO and MO₂ at normal conditions. MOO is a radical.


Reaction Energies (in eV) for Group 17 Elements with H₂

At		Ts	
Reaction	Energy	Reaction	Energy
At + H = AtH	-2.58	Ts + H = TsH	-1.99
$At + 1/2H_2 = AtH$	-0.178	$Ts + 1/2H_2 = TsH$	0.353
$AtO + H_2 = At + H_2O$	-2.760	$TsO + H_2 = Ts + H2O$	-2.691
$AtOO + H_2 = AtO + H_2O$	-2.042	TsOO + H ₂ = TsO + H2O	-1.949
$AtOO + H_2 = AtOH + OH(.)$	-0.838	$TsOO + H_2 = TsOH + OH(.)$	-0.832
$OAtO + H_2 = AtO + H2O$	-2.853	OTsO + H ₂ = TsO + H2O	-2.834

Formation of MH, MOH and MO is possible

E_{ads} (in kJ/mol) of At, AtH and AtOH on Gold

	At		AtH		AtOH		AtO ₂ (?)	
	Theory	Ехр.	Theory	Exp.	Theory	Exp.	Theory	Exp.
Au(111)	184	156 (He) 159 (H ₂) 154 (He/H ₂ O)	164	-	185	-	No reaction with O_2 and H_2O	124 (O ₂) 125 (O ₂ /H ₂ O)

Temperature °C 30 -600 Yield, 20 ΔH__ ^{Au}(AtO_c)=124 kJ mo[* 10 -200 Q (a) 1200 ⊢ (AtO)=272-254°C 1000 -∆H₋₊^-(AtO_c)=124.7 kJ mol⁻¹ ĸ. -800 Yield, -600 400 20 200 10 (b) -200 10 30 50 60 Column length, cm

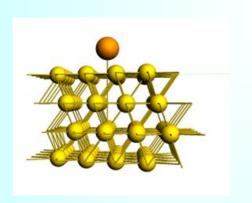
T_{dec}(AtO_c)=272°C

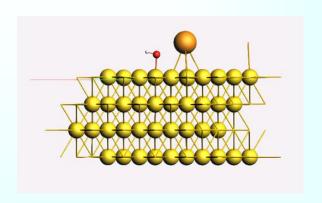
1200

1000

-800

Monte Carlo Simulation

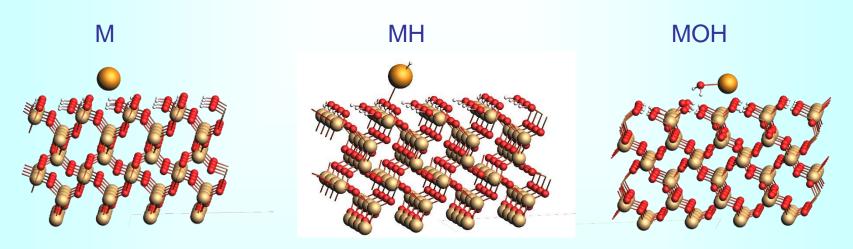

Theory: AtH < At = AtOH


Exper.: AtO_2 (?) < At

[A. Rhyzhkov, V. Pershina, M. Ilias, et al. PCCP 2023]

[A. Serov et al. RA 99, 593 (2011)]

E_{ads} (in kJ/mol) of At on Gold

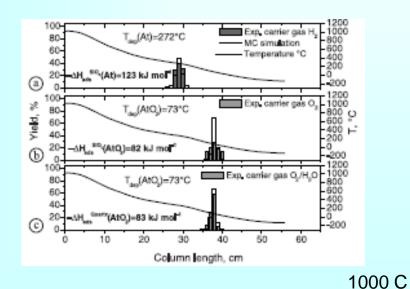

	At		AtH		AtOH		AtO ₂ (?)	
	Theory	Exp.	Theory	Exp.	Theory	Ехр.	Theory	Ехр.
Au(111)	184	156 (He) 159 (H ₂) 154 (He/H ₂ O)	164	-	185	-	No reaction with O_2 and H_2O	124 (O ₂) 125 (O ₂ /H ₂ O)

Theory: AtH < At = AtOH

[A. Rhyzhkov, V. Pershina, M. Ilias, et al. PCCP 2023]

Exper.: AtO_2 (?) < At [A. Serov *et al.* RA **99**, 593 (2011)]

E_{ads} (in kJ/mol) of M, MH and MOH (M = At and Ts) on Quartz

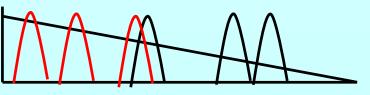


	Арр.	At	AtH	AtOH
Q(G)	SR	26.1	31.5	38.5
	SO	26.3	31.0	35.5
Q(V)	SR	19.6	40.4	45.0
	SO	19.6	40.3	41.0

At << AtH < AtOH

E_{ads} of At, AtH and AtOH on Quartz

	At		AtH		AtOH		AtO ₂ (?)	
	Theory	Ехр.	Theory	Exp.	Theory	Exp.	Theory	Ехр.
Quartz	20-26	123 (H ₂)	27-31	-	35-41	47	No reaction	82 (O ₂)
						(He/H₂O)	with O ₂ and	83 (O ₂ /H ₂ O)
							H ₂ O	80 (He/H ₂ O)



1200 Exp. HAtO 1000 T_(AIQ)=63°C 80--\1H_...⁸¹⁰(AtO₂)=80 kJ mol T_{dea}(HAtO)=79°C 800 -∆H_, ^{NO}(HAtO)=47 kJ mo[400 H -20030-20-10-10 60 Column length, cm

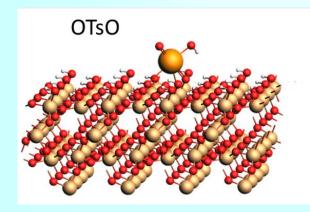
Theory: At < AtH < AtOH (At < AtO₂)

Exper.: AtOH << AtO₂ (?) < At

At AtO₂ AtOH AtOH AtH At

At and Ts on Quartz

MOLECULAR PHYSICS e2363408 https://doi.org/10.1080/00268976.2024.2363408



RESEARCH ARTICLE

Theoretical predictions of properties and adsorption behaviour of a superheavy element Ts and its lighter homolog At, and of their various gas-phase compounds, on hydroxylated quartz surfaces from periodic DFT calculations

Miroslav Iliaš (Da,b and Valeria Pershina (Db)

At < Ts

Table 9. Summary of the calculated adsorption energies of the At and Ts species on the Q(G) and Q(V) surfaces in comparison with experimental $-\Delta H_{\rm ads}$ (in kJ/mol). (The radicals are marked with a star).

			At		1	S
Adsorbed species	Theory		Expe	Experiment		
	Q(G)	Q(V)	Quartz	Conditions	Q(G)	Q(V)
M	26	20	123 ± 10^{a}	H ₂	23	20
MH	31	41			32	48
MOH	36	42	47 ± 5^{a}	He/H ₂ O	29	47
			< 65 ^b	He/Ar		
MO*	39	77			105	125
MOO*	34	34	$80 \pm 5^{a,c}$	He/O ₂ /H ₂ O	35	49
OMO*	76	98	$80 \pm 5^{a,c}$	He/O ₂ /H ₂ O	135	158
OMOH	43	99		2 2	96	109
MO(OH)	59	83			52	69

Experiment: a A. Serov, RA (2011); b N. Chiera, Mol. Phys. (2023).

E_{ads} (in kJ/mol) of Ts vs At on Gold and Quartz

Gold

At < Ts	AtH < TsH	AtOH < TsOH
(184 < 203)	(164 < 239)	(185 < 193)

Ts is more reactive

Quartz

At ≈ Ts	AtH ≈ TsH	AtOH ≈ TsOH
(24 ≈ 23)	(27-31 ≈ 19-32)	47 ≈ 47-50

Preliminary: Ts is about similarly reactive as At. Adsorption of MO₂ or MO(OH) can also be considered.

Further Theory Tasks

- Temperature dependent thermodyn. properties
- Reconstracted surfaces, e.g. fused silica (Car Parinello method)
- MD process
- Other types of hydroxylated quartz surfaces
- Reactions on the surface
- New surfaces (silicon nitride, Se)
- Kinetics of reactions
- General: "bulk" Og (not solid).

Acknowlegements

Thanks to

- Katharina Hermaínski, Uni Mainz
- Sasha Yakushev, GSI Darmstadt
- Dominik Dietzel, Uni Mainz

and to you for attention!