INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS, 46th COURSE, Erice

Role of isospin asymmetry in the onset of quark matter in neutron stars

Pavlo Panasiuk¹,

Oleksii Ivanytskyi², Violetta Sagun³, David Blaschke^{2,4,5}, Tim Dietrich^{6,7}

¹Centre for Physics of the University of Coimbra, ²University of Wroclaw, ³University of Southampton, ⁴Helmholtz-Zentrum Dresden-Rossendorf, ⁵CASUS, ⁶University of Potsdam, ⁷Max Planck Institute

17 Sep 2025

Introduction

2 Equation of state

Introduction

2 Equation of state

The problem

- \Rightarrow Terrestrial experiments on nuclear matter provide knowledge at density near $n_{\rm sat}=0.15{\rm fm}^{-3}$
 - → Rough shape of energy density, pressure etc is known
 - \rightarrow Certain intuition around n_{sat} is formulated
 - ightarrow In particular, we suspect that quarks only emerge at much higher density
- ⇒ It is tempting to apply the same intuition to neutron stars (unearthly conditions)
 - → But the intuition might be severely misleading

Aim of the talk:

- to demonstrate that the <u>quark onset density</u> within neutron stars may strongly deviate from earthly expectations
- ② to establish a relation between symmetric and asymmetric onset densities, supported by constraints

Symmetric and asymmetric matter

The difference between neutron star matter and earthly nuclear matter lies in their typical isospin asymmetry $I = \frac{n_I}{n_B}$.

- \Rightarrow Nuclei : symmetric matter $n_n \approx n_p \Rightarrow I \approx 0$
- \Rightarrow NSs : highly asymmetric matter $n_n \gg n_p \Rightarrow I \gg 0$ (usually $I \approx 0.8$)

Isospin asymmetry induces repulsion between n, p

⇒ quark onset is easier to reach?

Introduction

2 Equation of state

Equation of state in use

To describe onset properties we need hybrid EoS.

Hadronic EoS: DDTCY [Courtesy of S. Typel]

Relativistic mean-field description with nucleons and hyperons, with scalar attraction and vector repulsion employed. Marginally fits into flow constraint [Danielewicz et. al 2002], but does not describe $2M_{\odot}$ NSs.

Quark EoS: 3F nonlocal NJL [O. Ivanytskyi, 2025]

Nambu-Jona-Lasinio model with nonlocal current-current interactions in scalar, vector and diquark channels, with latter controlled by corresponding dimensionless couplings (η_V, η_D) .

- \Rightarrow (η_V, η_D) priorly serve as free parameters
- ⇒ *uds* particle content

For neutron star matter, charge neutrality and β -equilibrium is imposed.

Matching scheme 1

Maxwell construction (bridge between hadronic (HP) and quark phases (QP)) ensures mechanical and baryon chemical equilibrium on the phase boundary

$$P_H(\mu_{HP}^{ons}) = P_Q(\mu_{QP}^{ons})$$

 $\mu_{HP}^{ons} = \mu_{QP}^{ons}$

This type of matching ensures nonzero density jump $n_{QP}^{ons}-n_{HP}^{ons}$, which corresponds to slope difference in P/μ plane.

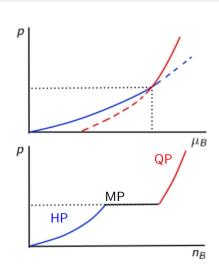


Figure: Sample Maxwell construction in P/μ and P/n planes

Matching scheme 2

Procedure:

⇒ EoS matching for a uniform grid of couplings

$$(\eta_V, \eta_D) \in [0.00, 1.00] \times [0.12, 0.5];$$

- ⇒ Seek Maxwell crossings;
- ⇒ Only keep models which have Maxwell crossings in symmetric and neutron star EoS simultaneously.

Limitations:

- ⇒ Only 1st order PT is considered;
- ⇒ Cases, where crossings only exist in symmetric or neutron star EoS, are discarded.

This restriction defines the (η_V, η_D) sample space.

Introduction

2 Equation of state

Coupling space

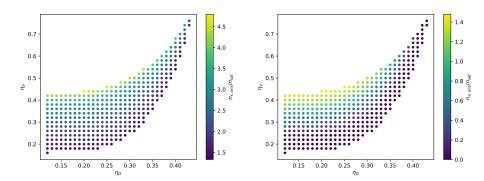


Figure: (η_V, η_D) space vs quark onset density in symmetric matter.

Figure: (η_V, η_D) space vs quark onset density in neutron star matter.

- ⇒ Asymmetric onset densities appear much lower (factor of 3?)
- \Rightarrow Symmetric onset densities reach 4.5 n_{sat} \rightarrow available experiments not violated

Onset space

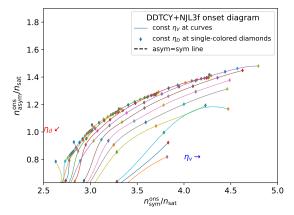
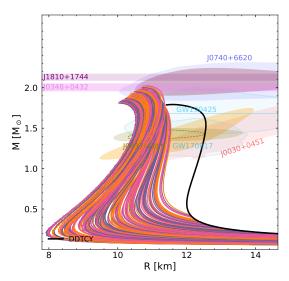



Figure: (η_V, η_D) mapping to $(n_{asym}^{ons}, n_{sym}^{ons})$ variables.

- $\Rightarrow n_{asym} n_{sym}$ relation is evidently strongly capped
 - → Support for "early" deconfinement in neutron stars.
- \Rightarrow Below $1n_{sat}$ is reachable in neutron stars, while maintaining $\sim 4n_{sat}$ in symmetric matter
 - n_{sat} does not carry the same intuition in neutron stars

Astrophysical sector

We run the EoS sample space through TOV equations to compare against astro constraints. Evidently, elimination with Bayesian analysis is possible. We apply

- ⇒ NICER constraints, J0740+6620 in particular;
- ⇒ GW170817 tidal deformability.

At the same time, flow constraint is marginally maintained for symmetric EoS.

Figure: TOV solutions for DDTCY-NJL3f.

Credible couplings

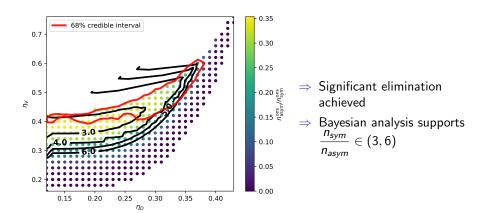


Figure: Coupling diagram with 1σ credible region (credits to A. Ayriyan). Levels indicate onset ratio.

Conclusions

- ⇒ The quark onset density of electrically neutral matter at beta equilibrium may exhibit significantly lower than in the symmetric case.
- ⇒ Bayesian analysis suggests relation between symmetric and asymmetric onset densities starting from 3, which elucidates the distinction between heavy ion and neutron star regimes.
- \Rightarrow Notably, the <u>analysis does not disfavor</u> asymmetric onset densities <u>below 1</u> n_{sat} .

Backup : Flow constraint

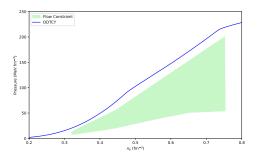


Figure: Symmetric DDTCY vs flow constraint band.

Backup: Onset constraint

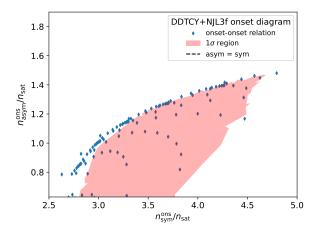


Figure: Onset space with 68% CL from BA.