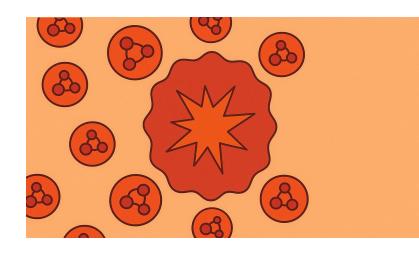
NEW RTA-BASED PARTICLIZATION AND FINAL STATE OBSERVABLES

Presenter: Isabelle Aguiar*

*PhD student at UFSC, Brazil.



isabelle.aguiar@posgrad.ufsc.br

OOO Aguiar, I.; Nunes, T.; Soares, OO G.; Shen C.; Denicol, G.

The particlization scheme

Numerical description of QGP formation process:

Relativistic viscous hydrodynamics

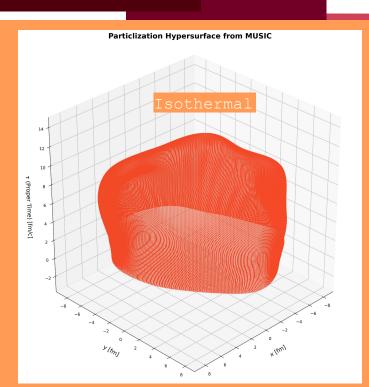
HRG model

Samples discrete

given species n.

hadrons of a

Particlization



Cooper-Frve formula:

$$E_p \frac{dN_n}{d^3p} = \frac{1}{(2\pi\hbar)^3} \int_{\Sigma} p \cdot d^3\sigma f_n(x,p)$$

$$\left[f_{eq,n}(x,p) + \delta f_n(x,p)\right]$$

Encode the effects of

non-equilibrium dynamics.

$$f_{eq,n}(x,p) = g_n \left[\exp\left(\frac{p_n^{\mu} u_{\mu}}{T}\right) + a_n \right]^{-1}$$

2/16

Kinetic description

f_n describe the microscopic state of the
system.

Relativistic Boltzmann equation:

$$p_n^{\mu} \partial_{\mu} f_n = C_n[f]$$

Accounts for particle interactions and how deviations relax towards equilibrium.

Hydrodynamics:

• Emerges from this framework as a consequence of energy and momentum conservation.

• Local temperature and velocity fields are defined through Landau matching.

• Out of equilibrium, the T $^{\mu\nu}$ splits in equilibrium contributions plus Π and $\pi^{\mu\nu}$ viscous corrections.

Hydro description

Macroscopic currents can be connected with microscopic deviations through Chapman-Enskog expansion.

Constitutive relations:

Constitutive relations: Commonly used in
$$\Pi \simeq -\zeta heta$$
 $\pi^{\mu
u} \simeq 2 \eta \sigma^{\mu
u}$ particlization models.

Anderson-Witting ansatz:

$$f_{eq,n}\hat{L}_n\phi_n\simeq -rac{E_{p,n}}{ au_R}\delta f_n=-rac{E_{p,n}}{ au_R}f_{eq,n}ar{f}_{eq,n}\phi_n$$
 Deviations from equilibrium relax with a single time scale, $oldsymbol{ au}_{_{
m R}}$.

RTA: Works if $au_{_{
m D}}$ doesn't depend on the particle type or momentum.

New RTA ansatz:

$$f_{\mathrm{eq},n}\hat{L}_{n}\phi_{n} \simeq -\frac{E_{p,n}}{ au_{R,n}}f_{\mathrm{eq},n}ar{f}_{\mathrm{eq},n}\left[\phi_{n} - \frac{\sum_{m}\langle\phi_{m},E_{p,m}\rangle}{\sum_{m}\langle E_{p,m},E_{p,m}\rangle}E_{p,n} - \frac{\sum_{m}\langle\phi_{m},p_{m}^{\langle\mu\rangle}\rangle}{\frac{1}{3}\sum_{m}\langle p_{m}^{\langle
u\rangle},p_{m\langle
u\rangle}
ight)}p_{n\langle\mu\rangle}\right]$$

New RTA: Counter-terms constructed from the conserved quantities of the system. The phenomenological parameter Y summarize microscopic interactions.

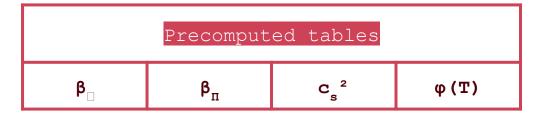
$$au_{R,n} = t_R \left(rac{E_p}{T}
ight)^\gamma$$
 4/16

Numerical implementation

corrections in terms of dissipative currents:

$$\left. \phi_{p,n} \right|_{\text{bulk}} = \left[\varphi(T) \frac{E_{\mathbf{p},i}}{T} - \frac{m_i^2}{3T^2} \left(\frac{E_{\mathbf{p},i}}{T} \right)^{\gamma - 1} + \left(\frac{1}{3} - c_s^2 \right) \left(\frac{E_{\mathbf{p},i}}{T} \right)^{\gamma + 1} \right] \frac{\Pi}{\beta_{\Pi}}$$

$$\phi_{p,n}\Big|_{\text{shear}} = \frac{1}{T^2} \left(\frac{E_{\mathbf{p},i}}{T}\right)^{\gamma-1} p_i^{\langle \mu} p_i^{\nu \rangle} \frac{\pi_{\mu\nu}}{2\beta_{\pi}}$$

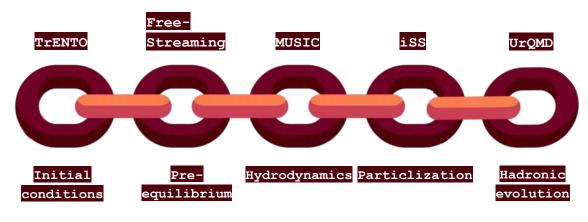


Y = 0, 0.5 and 1

- Particle yields are sample for each hypersurface cell.
- Poisson distribution to decide how many particles in each event.
- Particle momentum is calculated from thermal equilibrium distribution.
- Each sampled momentum is tested with Cooper-Frye formula.

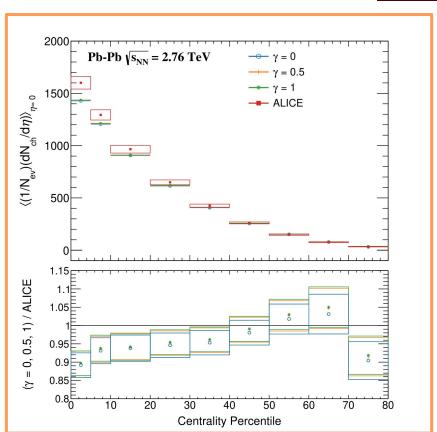
$$f_n = f_{\mathrm{eq},n} + \delta f_n \longrightarrow \text{regulated to prevent negative momentum distribution}$$

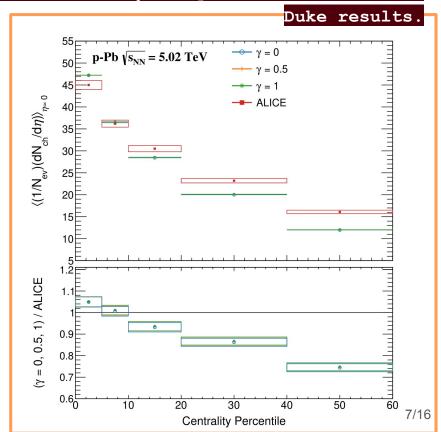
Numerical implementation



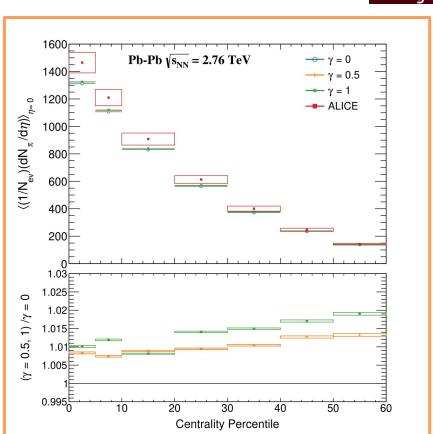
	Pb-Pb			p-Pb		
N° events	1000			1000		
Y	0	0.5	1	0	0.5	1
Free-streaming time	fluctuating			fixed		
Parameters	JETSCAPE			Duke group		

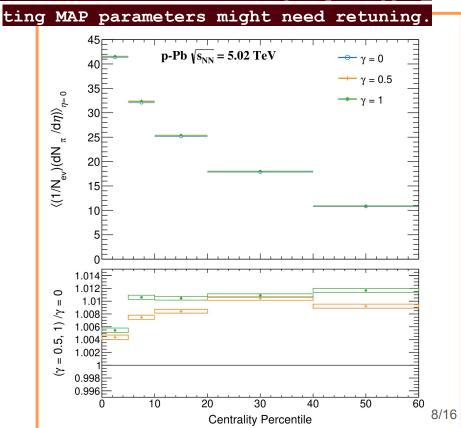
- Total Nch: No significant dependence on Y.
- Total Nch is insensitive to linear II corrections.
 - ullet \square Good cross-check: f Y=0 reproduces JETSCAPE and

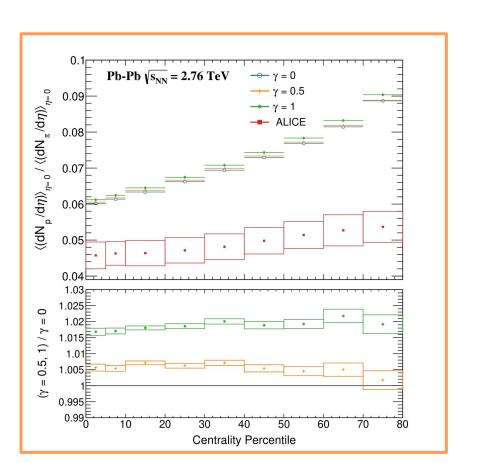


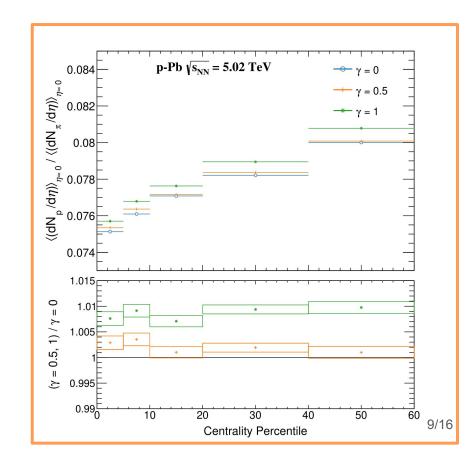


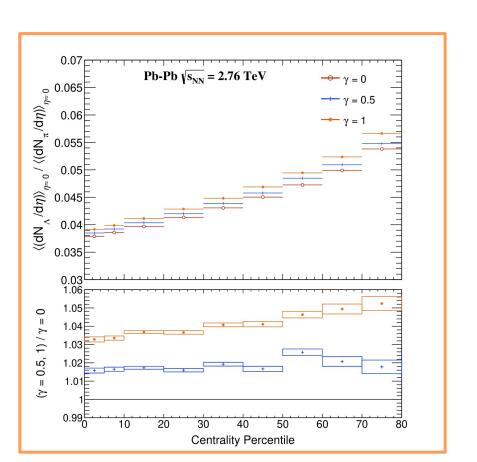
- Pions Nch:
- Slight dependence on Y.
- Larger Y produces higher pion yield.
- Agreement with ALICE worsens slightly, sugges

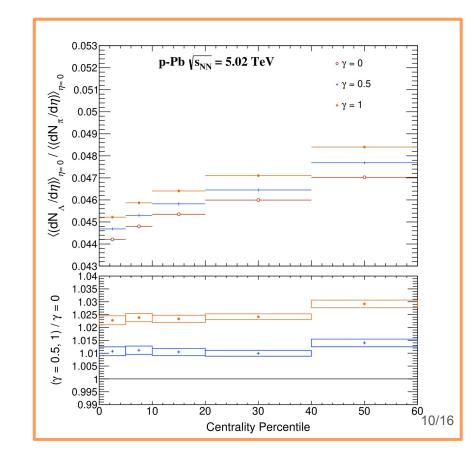


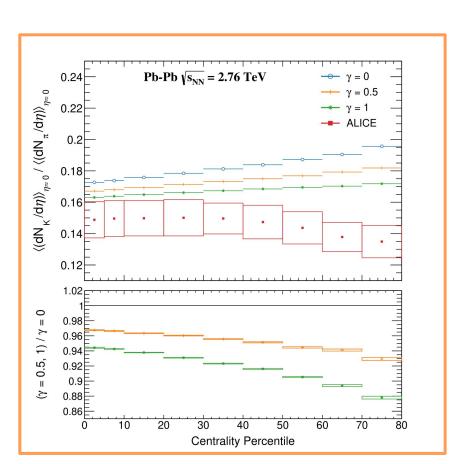


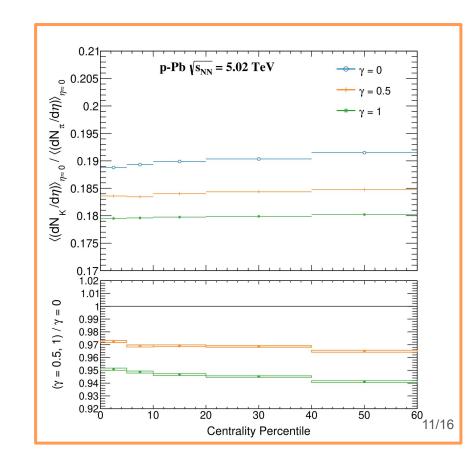


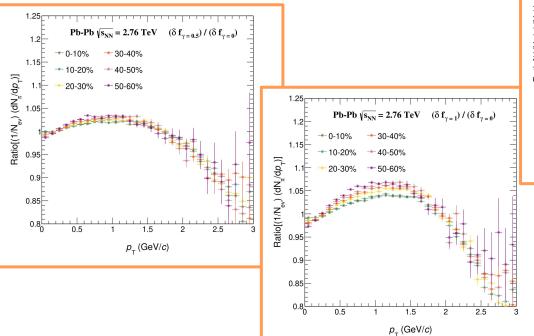


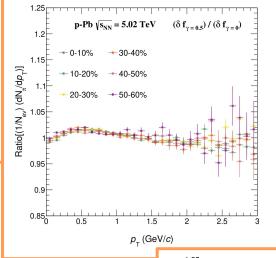


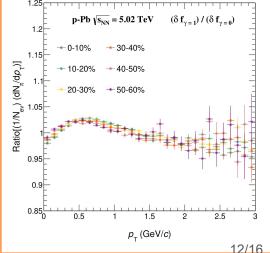






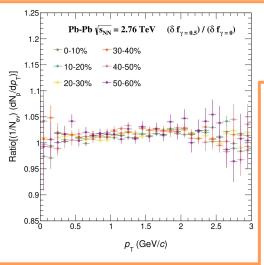


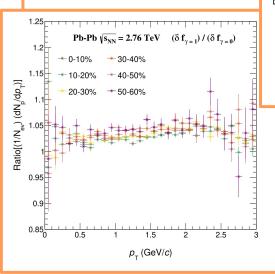


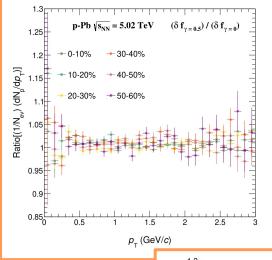


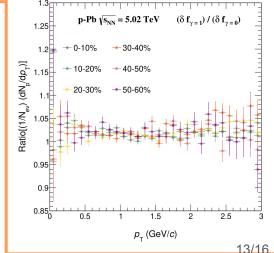
Pion p -spectra ratio: • Mid-p peak grows

with Y.



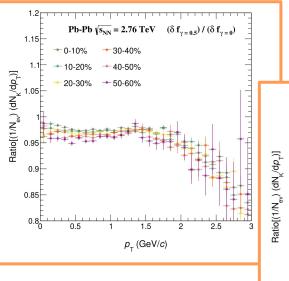


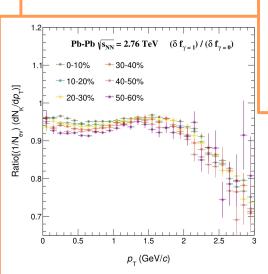


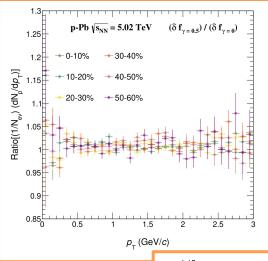


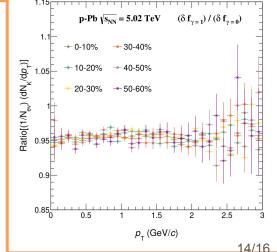
Proton p -spectra ratio:

Similar but weaker effect.









Kaon p -spectra ratio: •

Opposite trend, compensating changes in pions/protons.

Conclusions & outlook

Conclusions:

- Implemented a new RTA-based particlization scheme with mass-dependent viscous corrections, controlled by parameter γ .
- Found that identified particle yields, ratios, and p $_{\perp}$ -spectra depend on γ , with different trends for different species.
- Opens a new avenue to constrain QGP transport coefficients using identified particle observables in hybrid models.

Outlooks:

- Study other observables (e.g. flow coefficients, viscosity is it big?, centralities without scatterings).
- ullet Include $oldsymbol{\gamma}$ and identified species data in Bayesian analyses.

Thank you for your attention!

Obrigada!

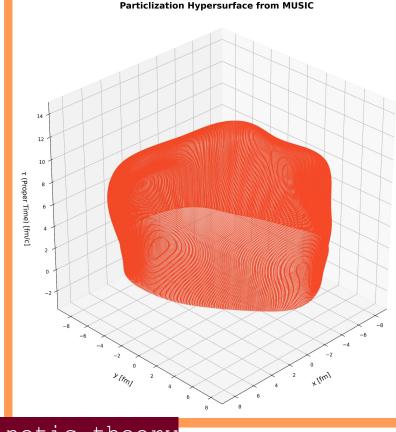
What is this particlization stage?

hadronization encoded in the equation of state

hydrodynamics

unphysical

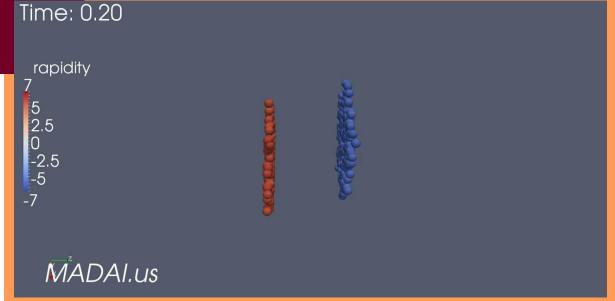
particlization



kinetic theory

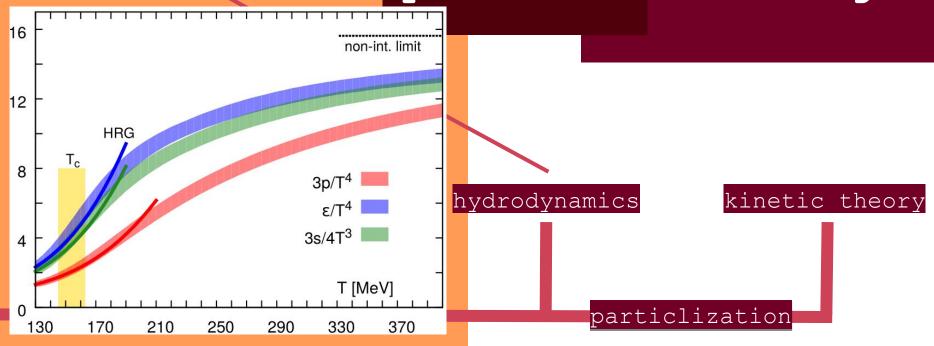
What is this particlization stage?

look at what
happens after
QGP is formed:



hadronization encoded in the equation of state

What is this particlization stage?

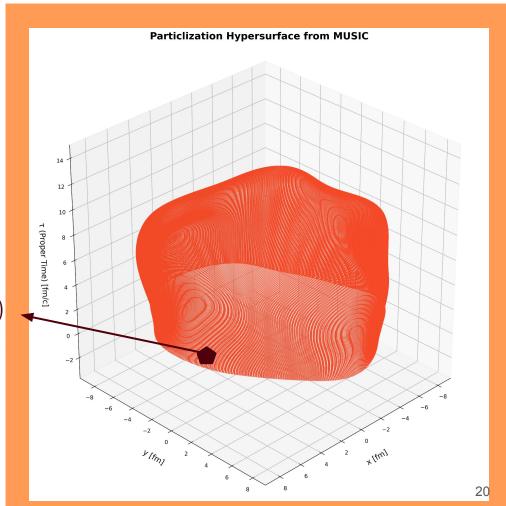


Adapted from: HotQCD collaboration.

The particlization scheme

$$E_p \frac{dN_n}{d^3 p} = \frac{1}{(2\pi\hbar)^3} \int_{\Sigma} p \cdot d^3 \sigma f_n(x, p)$$

probability given by its
phase-space distribution



QGP has viscosity!

What is this particlization stage?

$$p_n^\mu \partial_\mu \left[f_{eq,n}(x,p) \ + \ \delta f_n(x,p) \right] = C_n[f]$$

$$f_{eq,n}(x,p) = g_n \left[\exp \left(\frac{p_n^\mu u_\mu}{T} \right) + a_n \right]^{-1}$$
 encode the effects of non-equilibrium dynamics

RTA is a approximation to solve Boltzmann equation

Hydro description

Macroscopic currents can be connected with microscopic deviations through Chapman-Enskog expansion

Anderson-Witting ansatz:

$$f_{eq,n}\hat{L}_n\phi_n \simeq -\frac{E_{p,n}}{\tau_R}\delta f_n = -\frac{E_{p,n}}{\tau_R}f_{eq,n}\bar{f}_{eq,n}\phi_n$$

if $au_{
m R}$ depend on the particle species, or the momentum of that given species, and

$$\partial_{\mu}T^{\mu\nu} = -\sum_{n} \int dP_{n} \frac{E_{p,n}}{\tau_{R,n}} p_{n}^{\nu} \delta f_{n}$$

RTA: works with Landau matching and an independent $au_{ ext{R}}$ on particle parameters

Get to know: new RTA

new RTA ansatz:

$$f_{\mathrm{eq},n}\hat{L}_{n}\phi_{n} \simeq -\frac{E_{p,n}}{\tau_{R,n}}f_{\mathrm{eq},n}\bar{f}_{\mathrm{eq},n}\left[\phi_{n} - \frac{\sum_{m}\langle\phi_{m},E_{p,m}\rangle}{\sum_{m}\langle E_{p,m},E_{p,m}\rangle}E_{p,n} - \frac{\sum_{m}\langle\phi_{m},p_{m}^{\langle\mu\rangle}\rangle}{\frac{1}{3}\sum_{m}\langle p_{m}^{\langle\nu\rangle},p_{m\langle\nu\rangle}\rangle}p_{n\langle\mu\rangle}\right]$$

$$\tau_{R,n} = t_R \left(\frac{E_p}{T}\right)^{\gamma}$$

nRTA: counter-terms constructed from the conserved quantities of the system

- Framework that respects fundamental conservation laws
- Flexibility in describing how different hadrons, and different momentum modes, relax towards equilibrium

Get to know: new RTA

new RTA ansatz:

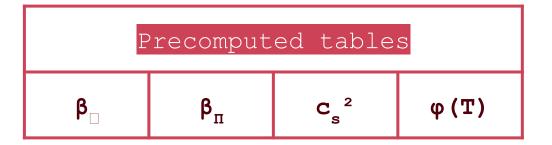
$$f_{\text{eq},n}\hat{L}_n\phi_n \simeq -\frac{E_{p,n}}{\tau_{R,n}}f_{\text{eq},n}\bar{f}_{\text{eq},n}\left[\phi_n - \frac{\sum_m \langle \phi_m, E_{p,m} \rangle}{\sum_m \langle E_{p,m}, E_{p,m} \rangle}E_{p,n} - \frac{\sum_m \langle \phi_m, p_m^{\langle \mu \rangle} \rangle}{\frac{1}{3}\sum_m \langle p_m^{\langle \nu \rangle}, p_{m\langle \nu \rangle} \rangle}p_{n\langle \mu \rangle}\right]$$

$$\tau_{R,n} = t_R \left(\frac{E_p}{T}\right)^{\gamma}$$

nRTA: counter-terms constructed from the conserved quantities of the system

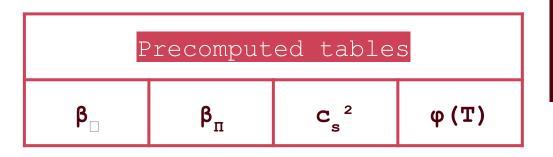
- Framework that respects fundamental conservation laws
- Flexibility in describing how different hadrons, and different momentum modes, relax towards equilibrium

Numerical implementation



- Particle momentum is calculated from thermal equilibrium distribution
- New RTA corrections are calculated using the precomputed tables
- Each sampled momentum is tested with Cooper-Frye formula

$$f_n = f_{\mathrm{eq},n} + \delta f_n \longrightarrow \frac{\text{regulated to prevent negative}}{\text{momentum distribution}}$$



Numerical implementation

- Particle yields are sample for each particlization hypersurface cell
- Poisson distribution to decide how many particles in each event

$$N_{\text{spec}} = \max(0, N_{\text{total}})$$

Numerical methodology

