Ab initio calculations as benchmarks for nuclear DFT

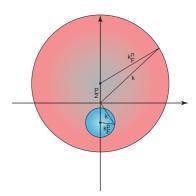
Vittorio Somà (TU Darmstadt & EMMI)

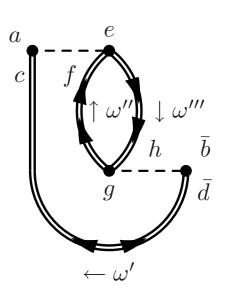
Nuclear matter:

Drischler, Somà, Schwenk, in preparation

Nuclei:

- Somà, Duguet, Barbieri, PRC 84 064317 (2011)
- Somà, Barbieri, Duguet, PRC 87 011303(R) (2013)
- Barbieri, Cipollone, Somà, Duguet, Navrátil, arXiv:1211.3315
- Somà, Barbieri, Duguet, arXiv:1304.xxxx
- Somà, Cipollone, Barbieri, Duguet, Navrátil, in preparation





EMMI workshop, GSI 21 March 2013

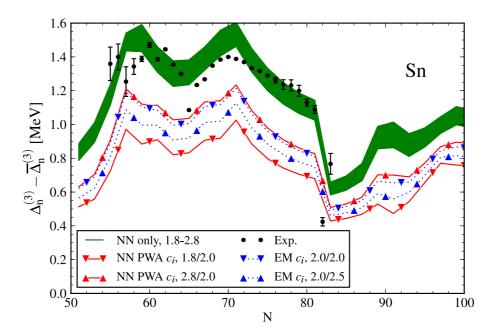
Ab initio standpoint

- ****** Connection with underlying inter-nucleon interactions
 - Microscopic perspective on new phenomena
- ** Predictive power
 - Crucial for exotic systems
 - Theoretical error estimates possible (and mandatory)

- ** Towards a more consistent description of structure and reactions
 - Crucial for interpretation of new experiments
- ** Provide benchmarks for other approaches
 - Important in the extension of traditional models to the neutron-rich sector

Ab initio methods and nuclear EDFs

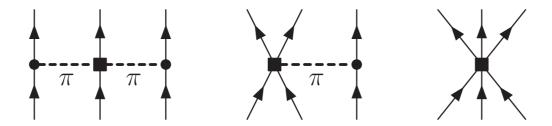
- ** Towards ab initio EDFs
 - Density matrix expansion [Gebremariam, Duguet, Bogner 2010]
 - Low-momentum interactions in the pairing channel [Lesinski et al. 2011]



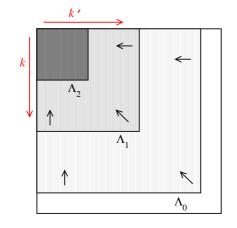
- ****** Guidance for extensions and improvements of EDFs
 - **UNEDF**
- ** Ab initio method should share the same features of the EDF
 - E.g. symmetry breaking (and restoration)

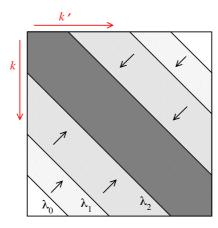
Advances in the modeling of nuclear forces

- ** Nuclear interactions from chiral EFT
 - Consistent many-body forces
 - A way to quantify theoretical errors



- ** Renormalization group techniques for NN and 3N forces
 - Many-body problem more perturbative





Estimation of theoretical errors

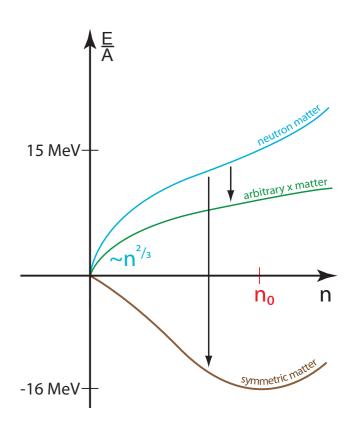
** Crucial for benchmarking and extrapolations to neutron-rich sector

	Asymmetric matter	Medium-mass nuclei
1) Interaction		×
2) Many-body expansion	×	×
3) Model space truncation		
4) Numerical algorithms		

Asymmetric nuclear matter

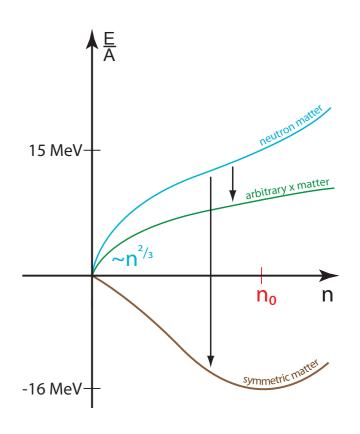
Asymmetric nuclear matter

- ** Applications in astrophysical environments
 - Compact stars
 - Core-collapse supernovae
- ** Very few calculations with explicit isospin asymmetry
 - AFDMC [Fantoni et al. 2008]
 - NN only
 - SCGF [Frick et al. 2005]
 - NN only, finite temperature
 - BHF [Bombaci and Lombardo 1991, Zuo et al. 1999, Zuo 2012]



Asymmetric nuclear matter

- ** Applications in astrophysical environments
 - Compact stars
 - Core-collapse supernovae
- ** Very few calculations with explicit isospin asymmetry
 - AFDMC [Fantoni et al. 2008]
 - NN only
 - **SCGF** [Frick *et al.* 2005]
 - NN only, finite temperature
 - [Bombaci and Lombardo 1991, Zuo et al. 1999, Zuo 2012]



** Parabolic approximation

$$\frac{E(n,\beta)}{A} = \frac{E(n,\beta=0)}{A} + \beta^2 E_{sym}(n) + \mathcal{O}(\beta^4)$$

where
$$\beta \equiv \frac{n_n - n_p}{n_n + n_p}$$

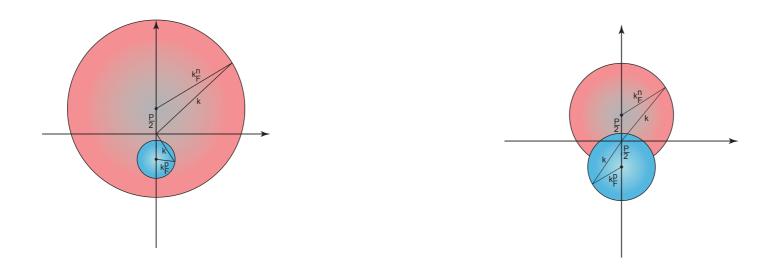
Calculation scheme

₩ MBPT(2)

- → chiral EFT N³LO NN and N²LO 3N interactions
- NN evolved to low-momentum (see Gezerlis and Hebeler)
- → 3N forces at the HF level

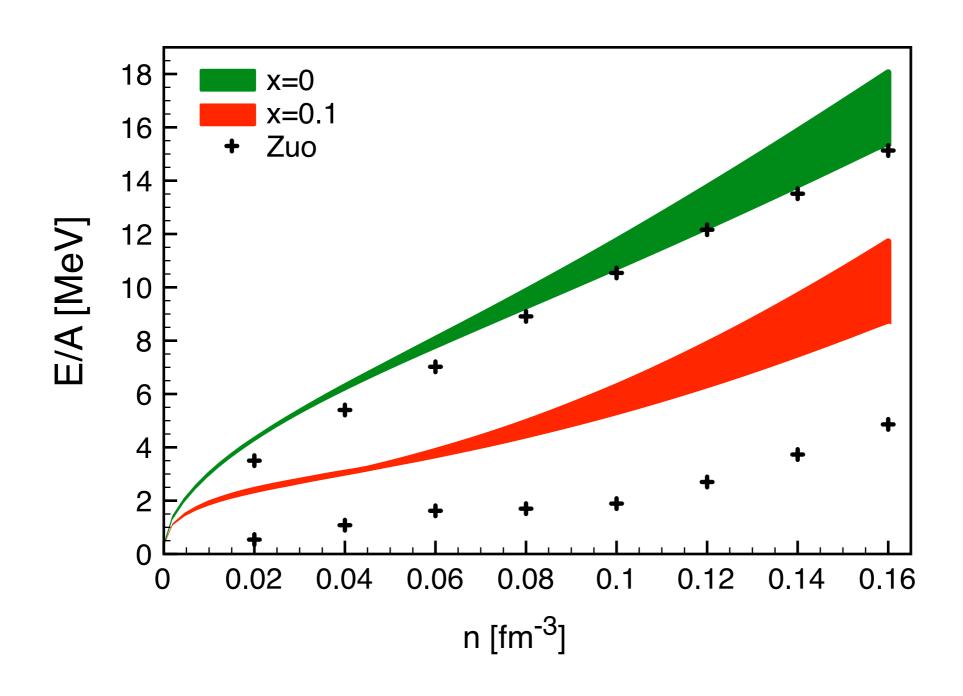
Small x limit
$$x \equiv \frac{n_p}{n_n + n_p}$$
 \longrightarrow $\left(V_{3N} \big|_{x} \approx V \big|_{nnn} + 3V \big|_{nnp} \right)$

** Non-trivial integration over the two different Fermi spheres



[Drischler 2012]

Energy of asymmetric matter

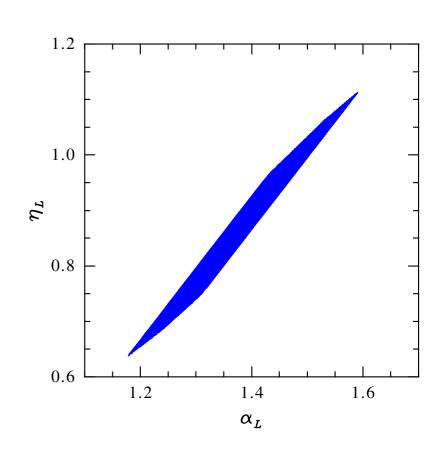


- ** NN interaction: chiral N³LO evolved to low momentum [Entem and Machleidt 2003]
- ₩ Uncertainties: 7 sets of low-k (1.8-2.8 fm⁻¹) & 3N cutoffs

Quasi-parabolic expansion

- ** Expression for the energy per particle in asymmetric matter
 - ★ Kinetic energy + interpolation of interaction energy

$$\frac{E(\overline{n}, x)}{A} = T_0 \left[\frac{3}{5} \left(x^{\frac{5}{3}} + (1 - x)^{\frac{5}{3}} \right) (2\overline{n})^{\frac{2}{3}} - \left((2\alpha - 4\alpha_L) x (1 - x) + \alpha_L \right) \overline{n} + \left((2\eta - 4\eta_L) x (1 - x) + \eta_L \right) \overline{n}^{\gamma} \right]$$

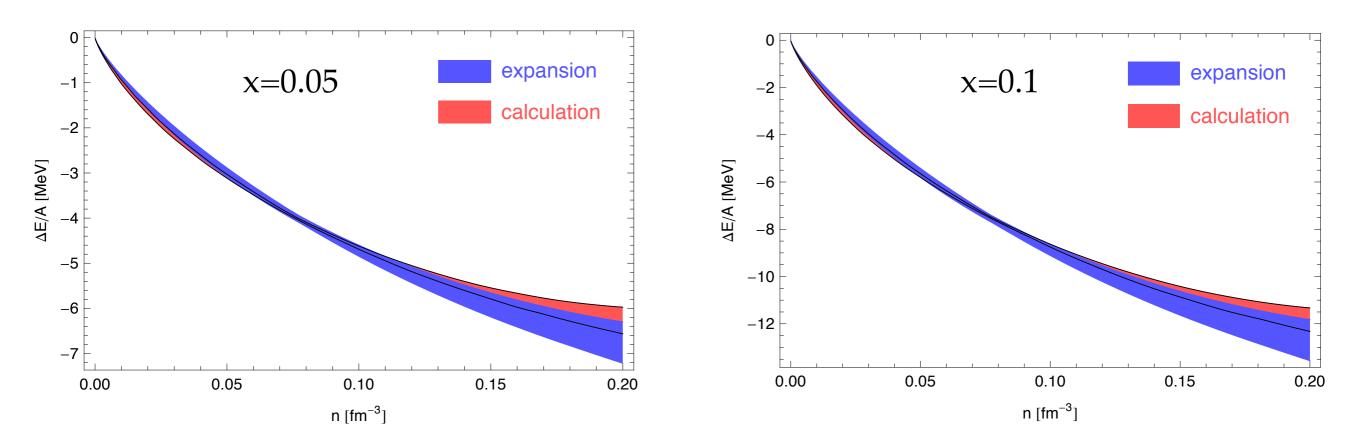


- Parameters determined from
 - saturation properties of symmetric matter
 - neutron matter energy and pressure calculations

Validation of quasi-parabolic expansion

** Compare energy relative to pure neutron matter

$$\frac{\Delta E(n,x)}{A} = \frac{E(n,x)}{A} - \frac{E(n,x=0)}{A}$$



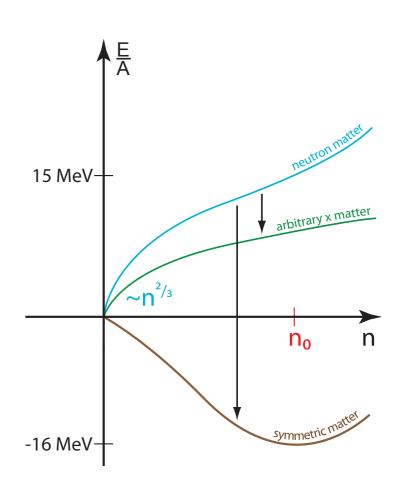
- **■** Excellent agreement within uncertainties
- Possible improvements in the expansion

Conclusions and outlook (part I)

- ** First explicit calculation of asymmetric matter with chiral interactions
 - Constrain isospin dependence of nuclear EOS
 - Revisit parabolic approximation for small proton fractions

***** Outlook

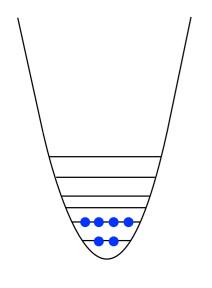
- Improve many-body expansion
- Use consistently evolved NN+3N interactions
- Release small proton fraction approximation



Open-shell medium-mass nuclei

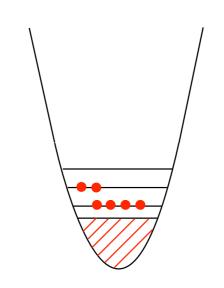
Advances in ab initio techniques

Light nuclei



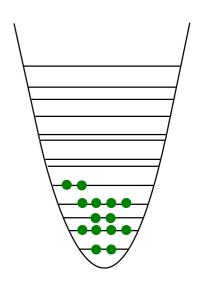
NCSM, GFMC,

Medium-mass nuclei



Miscroscopic SM,

Medium-mass nuclei



GF, CC, IM-SRG,

- Configuration interaction limited to small valence/model spaces
- Usual expansion schemes fail to account for pairing correlations
 - Limited to to doubly-closed-shell ± 1 and ± 2 nuclei

Going open-shell: Gorkov's idea

** Bogoliubov algebra + Green's function theory

** Keep the simplicity of a single-reference

- ** Address explicitly the non-perturbative formation of Cooper pairs
 - Formulate the expansion scheme around a Bogoliubov vacuum
 - Breaking of particle-number conservation (eventually restored)

Going open-shell: Gorkov's formalism

	<u>Dyson</u>	<u>Gorkov</u>
• Reference state	$ \psi_0^A angle$	$ \Psi_0\rangle \equiv \sum_A^{\text{even}} c_A \psi_0^A\rangle$
 One-body propagator 	$G_{ab} =$	$\mathbf{G}_{ab} = \begin{pmatrix} G_{ab}^{11} & G_{ab}^{12} \\ G_{ab}^{21} & G_{ab}^{22} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} & & & & & & & & & & & & & & & & &$
 Hamiltonian 	H	$\Omega = H - \mu A$
。 G.S. energy	E_0^A	$\Omega_0 = \sum_{A'} c_{A'} ^2 \Omega_0^{A'} \approx E_0^A - \mu A$ [Gorkov 1958]

Gorkov equations

****** Set of 4 Green's functions

$$\mathbf{G}_{ab}(\omega) = \mathbf{G}_{ab}^{(0)}(\omega) + \sum_{cd} \mathbf{G}_{ac}^{(0)}(\omega) \, \mathbf{\Sigma}_{cd}^{\star}(\omega) \, \mathbf{G}_{db}(\omega)$$

Gorkov equations

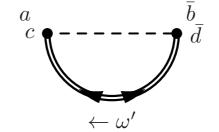
[Gorkov 1958]

Self-energy expansion

****** 1st order → energy-independent self-energy

$$\Sigma_{ab}^{11\,(1)} = \qquad \begin{array}{c} a \\ \bullet \\ b \end{array} - - - \frac{c}{d} \longrightarrow \downarrow \omega'$$

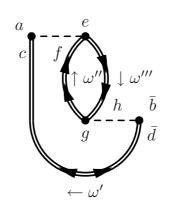
$$\Sigma_{ab}^{12\,(1)} =$$

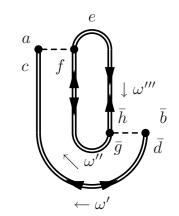


* 2nd order → energy-dependent self-energy

$$\Sigma_{ab}^{11\,(2)}(\omega) = \uparrow_{\omega'} \downarrow_{d} \downarrow_{d}$$

$$\Sigma_{ab}^{12\,(2)}(\omega) =$$





***** Gorkov equations

energy *dependent* eigenvalue problem

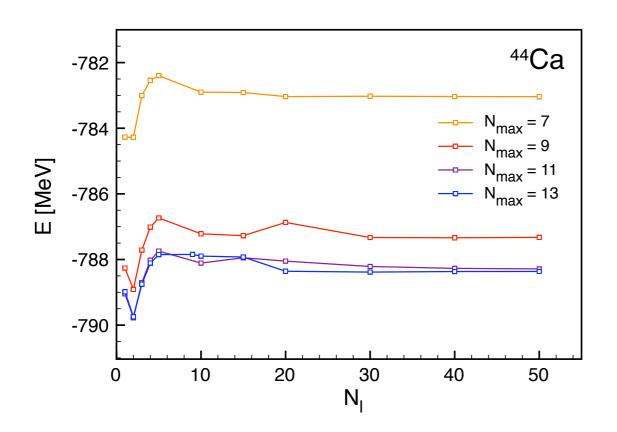
$$\sum_{b} \begin{pmatrix} t_{ab} - \mu_{ab} + \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \Sigma_{ab}^{21}(\omega) & -t_{ab} + \mu_{ab} + \Sigma_{ab}^{22}(\omega) \end{pmatrix} \Big|_{\omega_{k}} \begin{pmatrix} \mathcal{U}_{b}^{k} \\ \mathcal{V}_{b}^{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}_{a}^{k} \\ \mathcal{V}_{a}^{k} \end{pmatrix} \qquad \qquad \mathcal{U}_{a}^{k*} \equiv \langle \Psi_{k} | \bar{a}_{a}^{\dagger} | \Psi_{0} \rangle$$

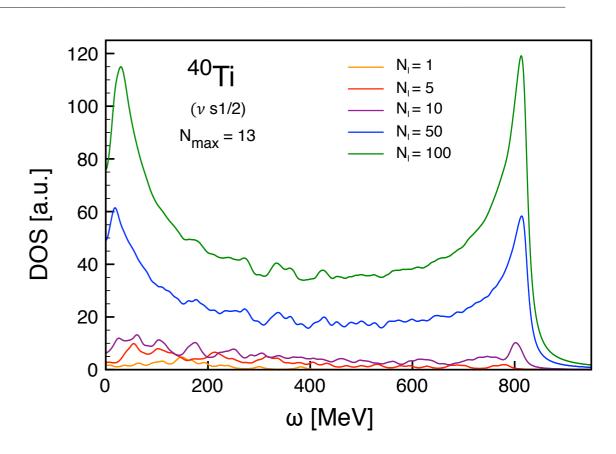
$$\mathcal{U}_a^{k*} \equiv \langle \Psi_k | \bar{a}_a^{\dagger} | \Psi_0 \rangle$$

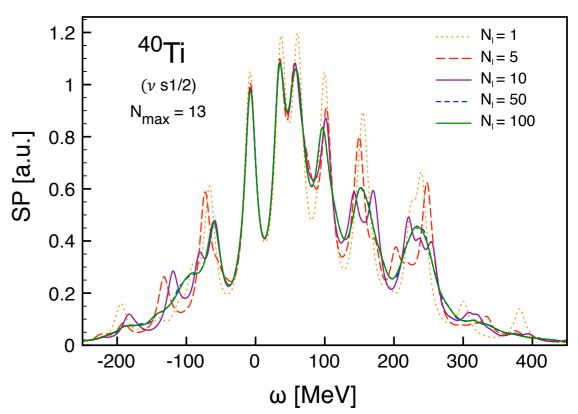
$$\mathcal{V}^{k*} = \langle \Psi_k | a_a | \Psi_0 \rangle$$

Krylov projection

- Lanczos-like algorithm
- Conserves moments of spectral functions
- Results become independent of N₁



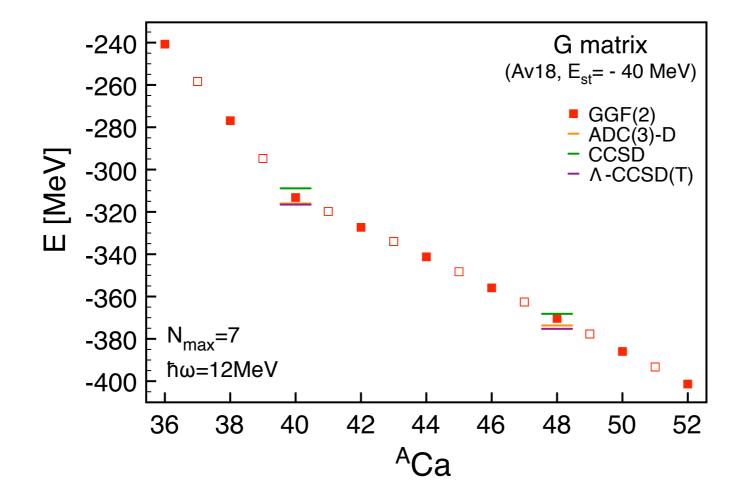




Benchmark with coupled cluster method

** Energy from Galitskii-Koltun sum rule

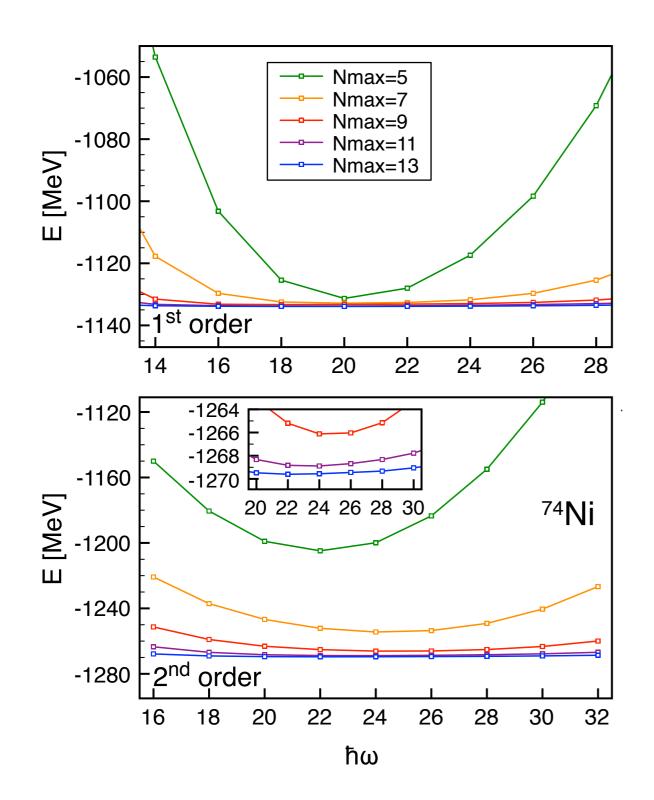
$$E_0^{\mathbf{A}} = \frac{1}{4\pi i} \int_{C\uparrow} d\omega \operatorname{Tr}_{\mathcal{H}_1} [\mathbf{G}^{11}(\omega) [\mathbf{T} + (\mu + \omega) \mathbf{1}]]$$



- → GGF and CC quantitatively similar
- \longrightarrow GGF(3) expected to reach Λ -CCSD(T) accuracy

Towards medium/heavy open-shell

₩ 74Ni



→ NN interaction: chiral N³LO SRG-evolved to 2.0 fm⁻¹

[Entem and Machleidt 2003]

- → Very good convergence
- From N=13 to N=11 \rightarrow 200 keV

E
$$(N=13) = -1269.6 \text{ MeV}$$

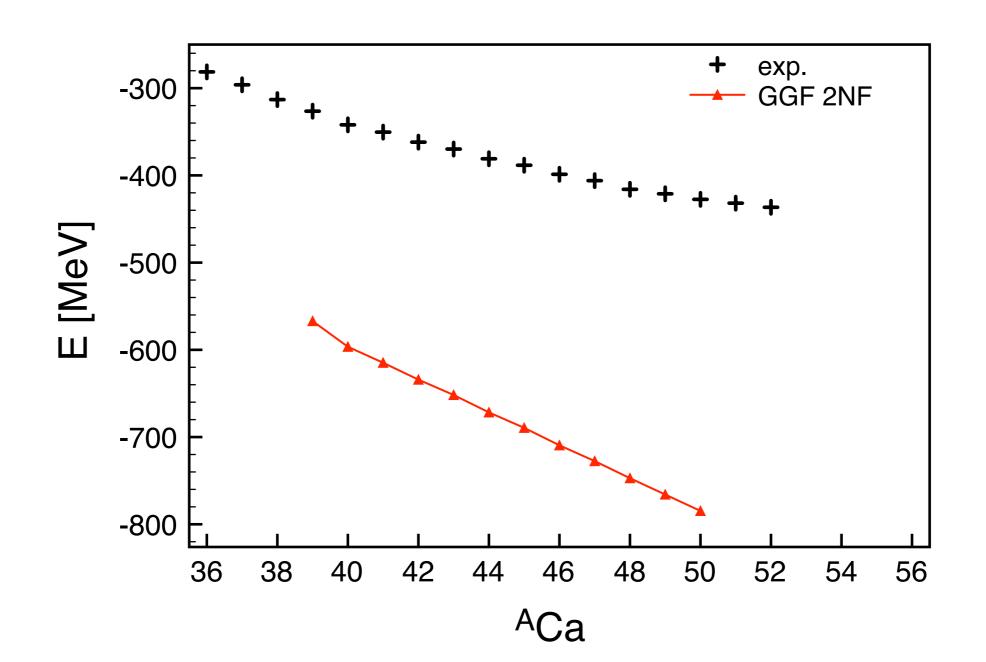
E $(N=\infty) = -1269.7(2) \text{ MeV}$

(Extrapolation to infinite model space from [Furnstahl, Hagen, Papenbrok 2012] and [Coon et al. 2012])

Calcium isotopic chain

₩ NN only

- Systematic along isotopic/isotonic becomes available
- Overbinding (increasing with A): need for three-body forces



Three-body forces

****** Inclusion of 3NF as effective 2NF

Average over the 3rd nucleon in each nucleus

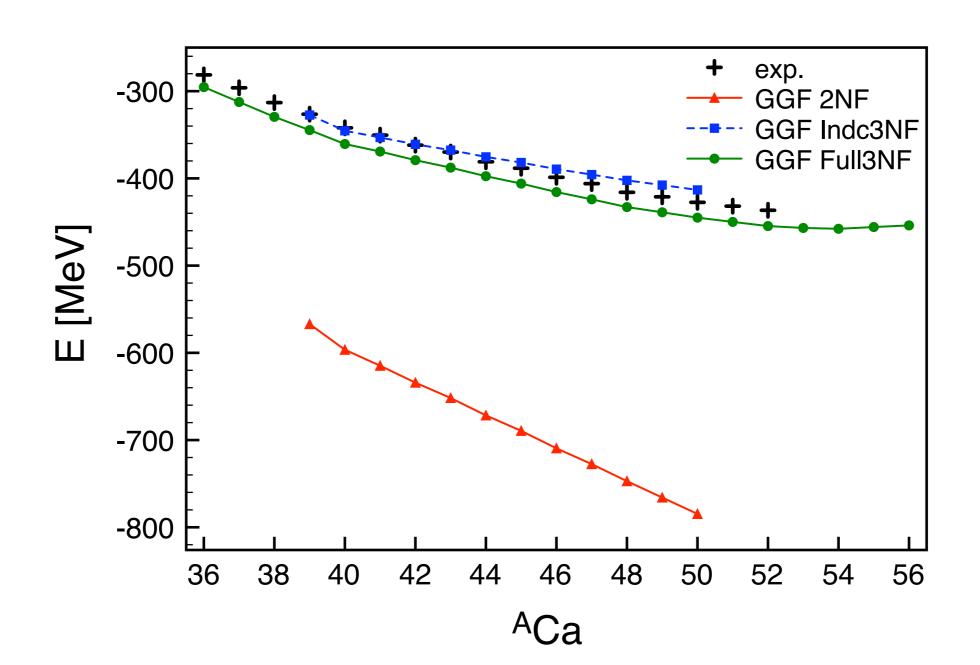
Additional term in the Galitskii-Koltun sum rule

$$E_0^{\mathcal{A}} = \frac{1}{4\pi i} \int_{C^{\uparrow}} d\omega \operatorname{Tr}_{\mathcal{H}_1} \left[\mathbf{G}^{11}(\omega) \left[\mathbf{T} + (\mu + \omega) \ \mathbf{1} \right] \right] - \frac{1}{2} \langle \Psi_0 | W | \Psi_0 \rangle$$

- ** 3N interaction: chiral N²LO (400 MeV) SRG-evolved to 2.0 fm⁻¹ [Navrátil 2007]
 - Fit to three- and four-body systems only
 - Modified cutoff to reduce induced 4N contributions [Roth et al. 2012]

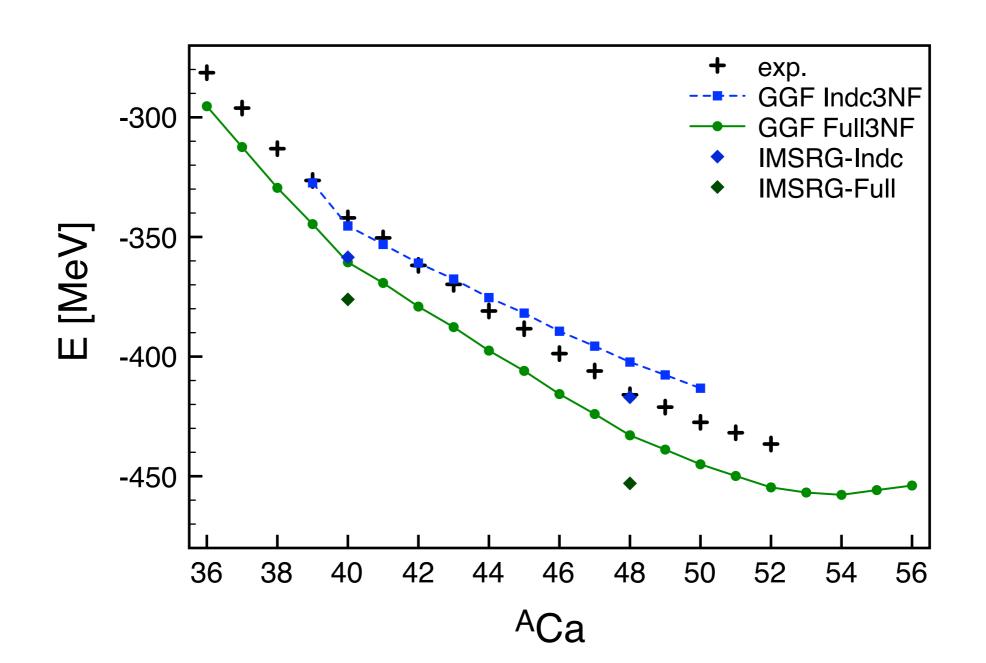
Calcium isotopic chain

- ** First ab initio calculation of the whole Ca chain with NN + 3N forces
 - → 3NF bring energies close to experiment
 - Induced 3NF and full 3NF investigated



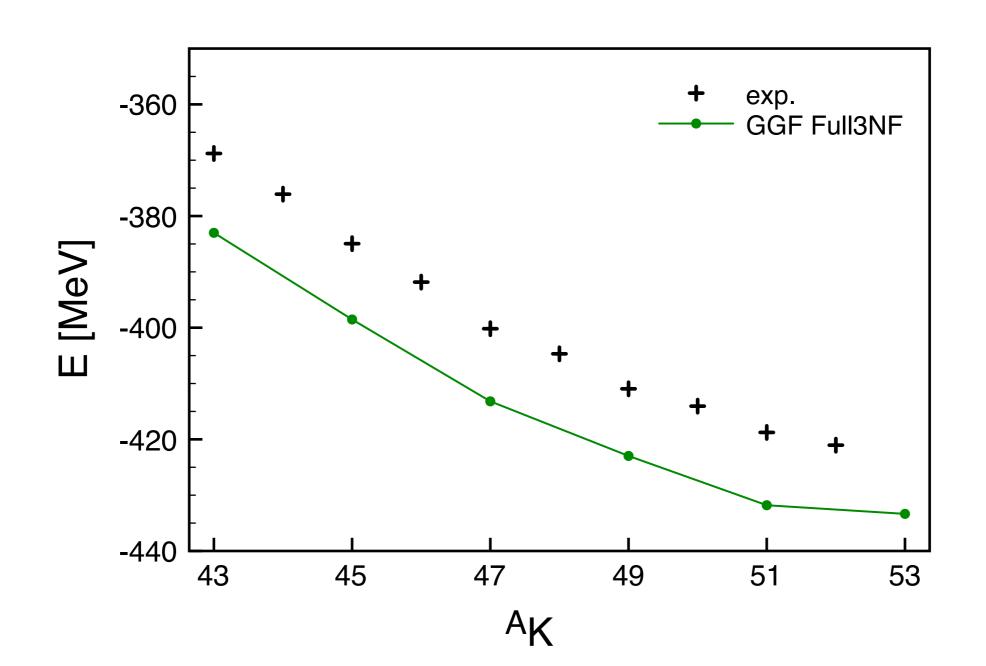
Calcium isotopic chain

- → Original 3NF correct the energy curvature
- Good agreement with IM-SRG (quantitative when 3rd order included)



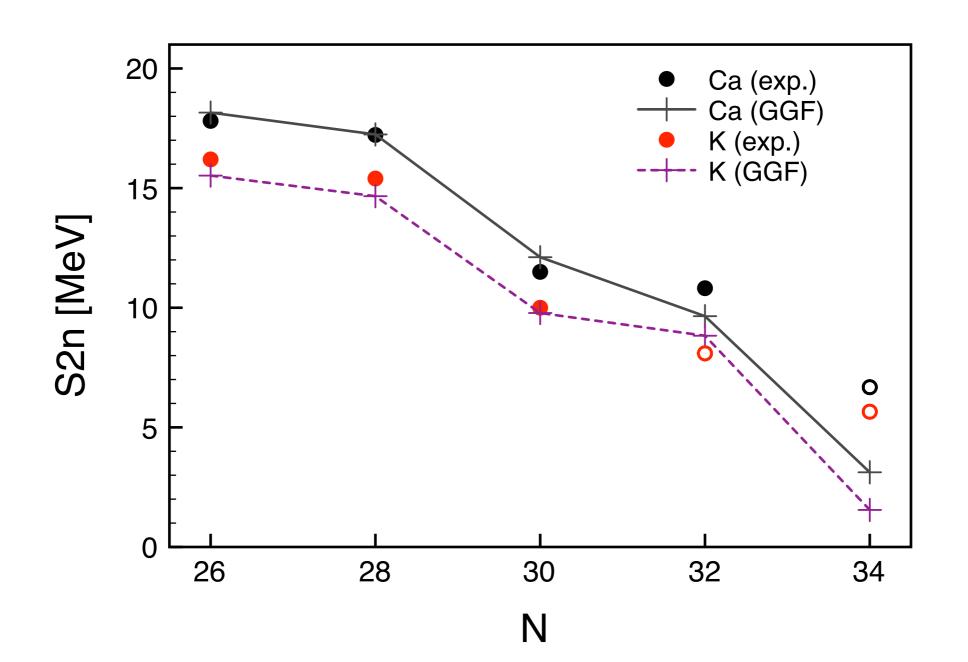
Potassium isotopic chain

- ****** Exploit the odd-even formalism: application to K
 - Trend and agreement similar to calcium
 - Future: consistent description of medium-mass driplines



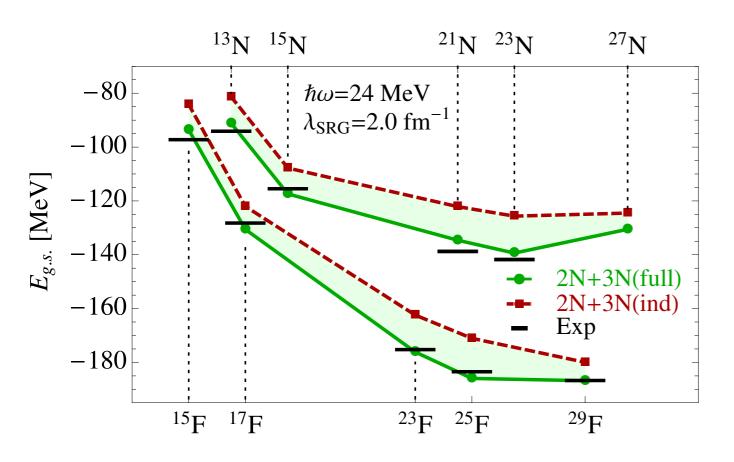
Two-neutron separation energies

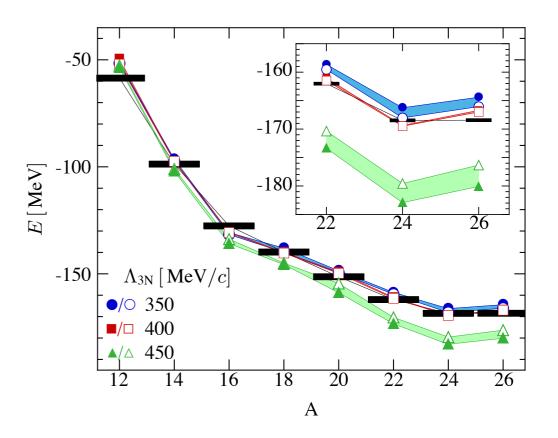
- ** Neutron-rich extremes of the nuclear chart
 - Good agreement with measured S2n
 - Towards a quantitative *ab initio* description of the medium-mass region



Benchmarks and chiral EFT interactions

- ** Ab initio calculations as a test for chiral EFT interactions
- ** Different approaches agree in O and Ca chains
 - Current chiral NN+3N forces overbind medium/heavy-mass nuclei





[Hergert et al., 2013]

Spectrum and spectroscopic factors

** Separation energy spectrum

$$G_{ab}^{11}(\omega) = \sum_{k} \left\{ \frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k*}}{\omega - \omega_{k} + i\eta} + \frac{\bar{\mathcal{V}}_{a}^{k*} \bar{\mathcal{V}}_{b}^{k}}{\omega + \omega_{k} - i\eta} \right\}$$

Lehmann representation

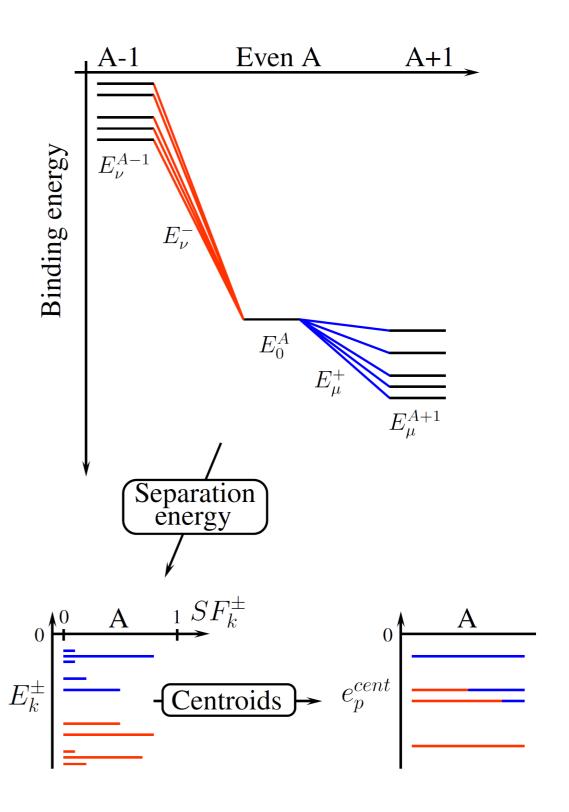
where
$$\begin{cases} \mathcal{U}_a^{k*} \equiv \langle \Psi_k | a_a^{\dagger} | \Psi_0 \rangle \\ \mathcal{V}_a^{k*} \equiv \langle \Psi_k | \bar{a}_a | \Psi_0 \rangle \end{cases}$$

and
$$\begin{cases} E_k^{+\,(A)} \equiv E_k^{A+1} - E_0^A \equiv \mu + \omega_k \\ E_k^{-\,(A)} \equiv E_0^A - E_k^{A-1} \equiv \mu - \omega_k \end{cases}$$

****** Spectroscopic factors

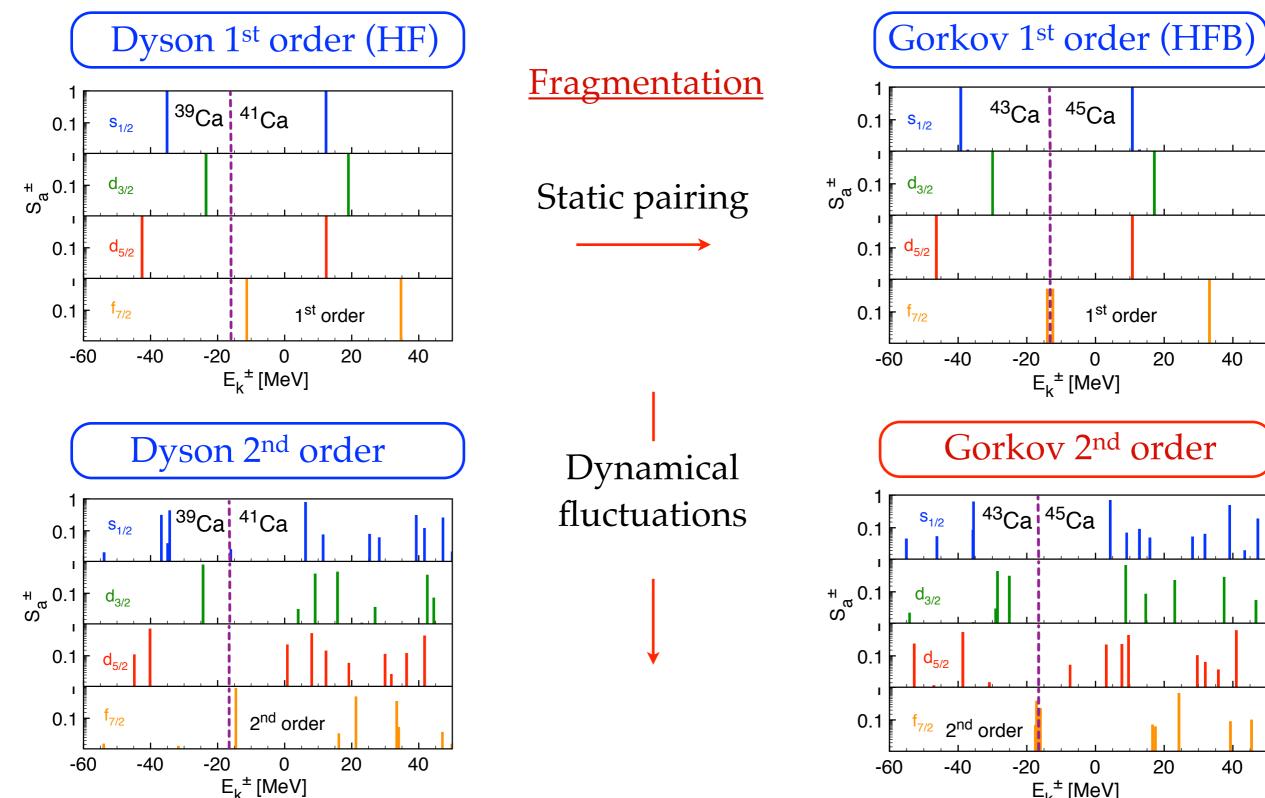
$$SF_{k}^{+} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a}^{\dagger} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{U}_{a}^{k} \right|^{2}$$

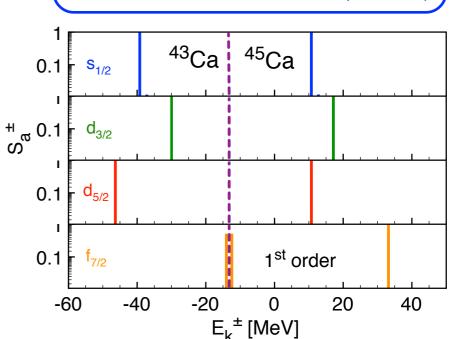
$$SF_{k}^{-} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{V}_{a}^{k} \right|^{2}$$

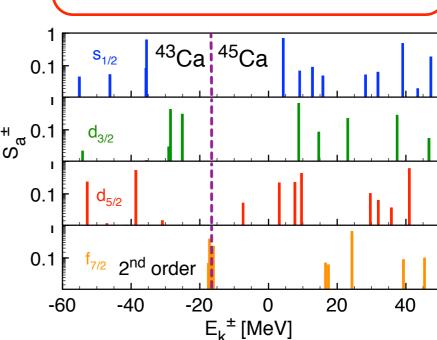


[figure from Sadoudi]

Spectral strength distribution

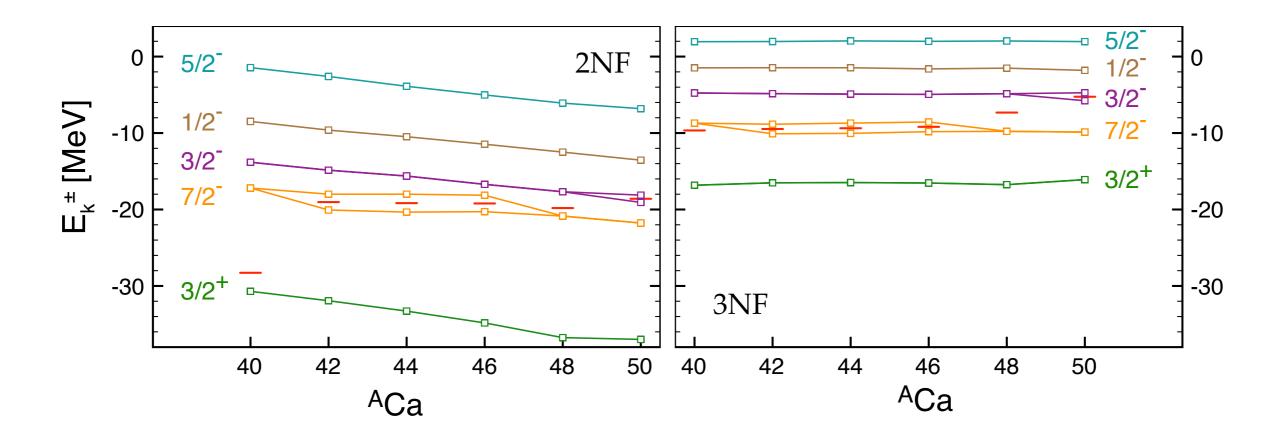






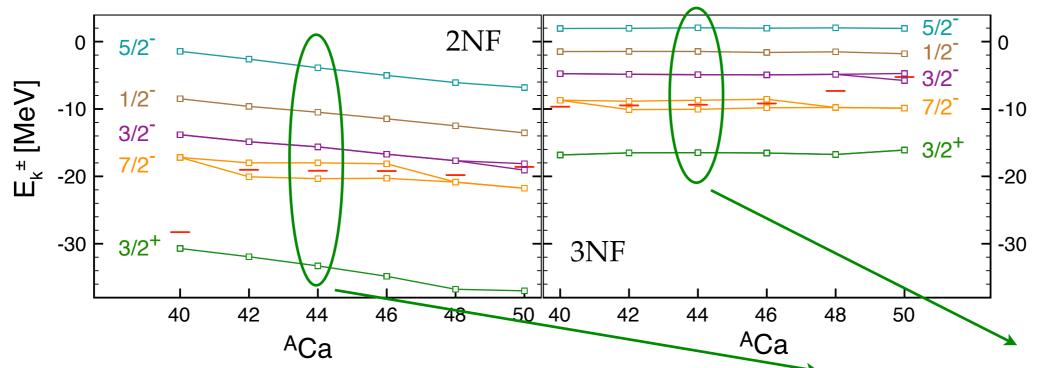
Shell structure evolution

****** One-neutron separation energies



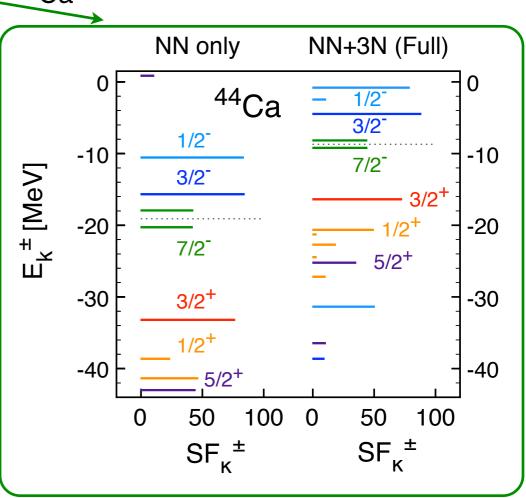
- → Static and dynamic pairing correlations
- → 3NF significantly compress spectrum

Shell structure evolution



₩ NN vs. NN+3NF in ⁴⁴Ca

- Similar degree of fragmentation
- SF of main peaks not much affected

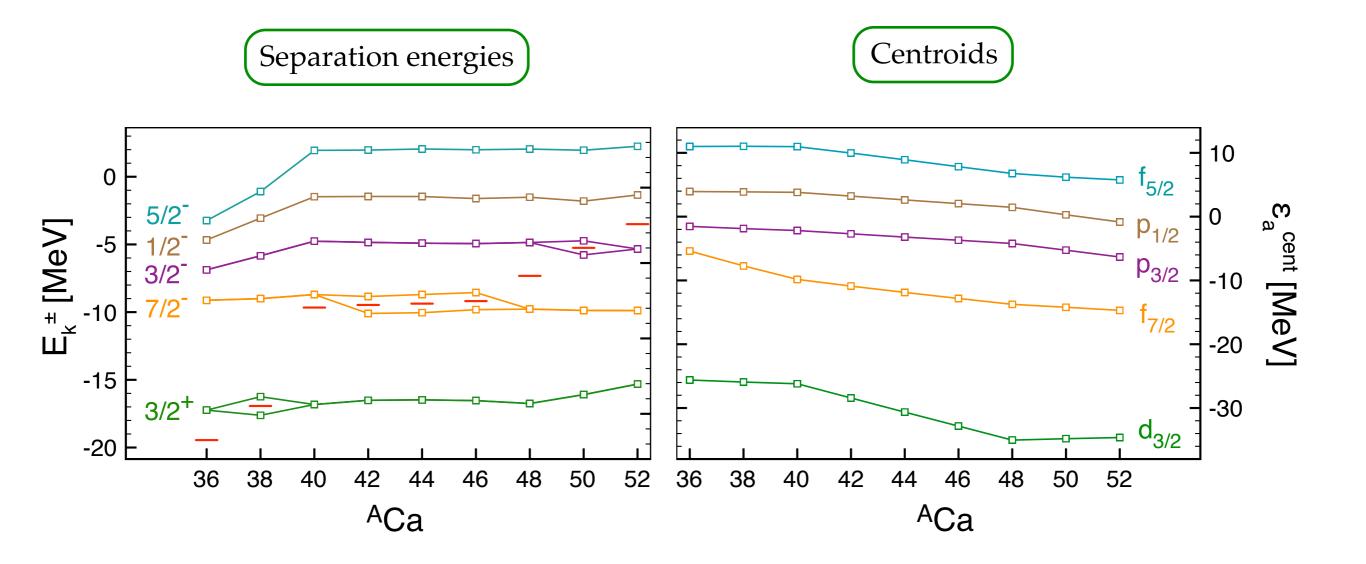


Shell structure evolution

₩ ESPE collect fragmentation of "single-particle" strengths from both N±1

$$\epsilon_{a}^{cent} \equiv h_{ab}^{cent} \, \delta_{ab} = t_{aa} + \sum_{cd} \bar{V}_{acad}^{NN} \, \rho_{dc}^{[1]} + \sum_{cdef} \bar{V}_{acdaef}^{NNN} \, \rho_{efcd}^{[2]} \equiv \sum_{k} \mathcal{S}_{k}^{+a} E_{k}^{+} + \sum_{k} \mathcal{S}_{k}^{-a} E_{k}^{-}$$

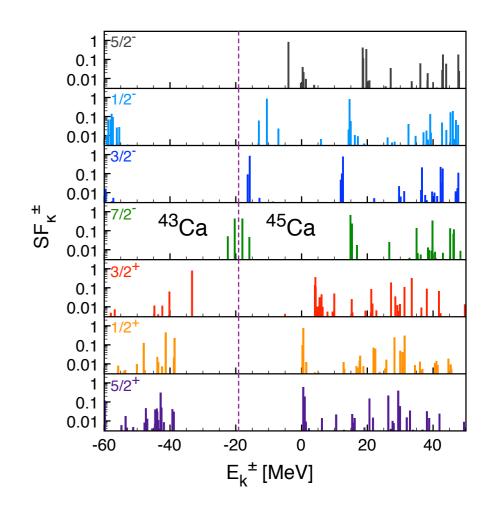
[Baranger 1970, Duguet and Hagen 2011]

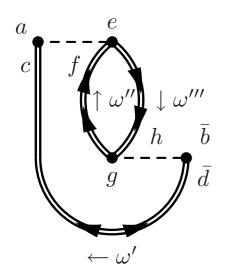


Conclusions and outlook (part II)

****** Gorkov-Green's functions:

- Manageable route to (near) degenerate systems
- First *ab initio* description of medium-mass chains
- → 2NF + 3NF: towards predictive calculations
- Energies: quantitative agreement
- → Spectra: study of shell structure evolution





- ****** Improvement of the self-energy expansion
- ** Proper coupling to the continuum
- ** Formulation of particle-number restored Gorkov theory
- ** Towards consistent description of structure and reactions

Acknowledgements

Collaborators:

Christian Drischler (TU Darmstadt) Achim Schwenk (TU Darmstadt)

Carlo Barbieri (University of Surrey) Andrea Cipollone (University of Surrey)

Thomas Duguet (CEA Saclay)

Petr Navrátil (TRIUMF)

Funding:

German Research Foundation

Computing resources:

Centre de Calcul Recherche et Technologie

