Restoring symmetries within the multi-reference nuclear EDF method Formal aspects, difficulties, regularized calculations and remaining problems

T. Duguet

CEA, Service de Physique Nucléaire, France NSCL, Michigan State University, USA

Collaborators: M. Bender, D. Lacroix, J. Sadoudi

EMMI workshop on Density Functional Theory, March 18-22 2013, GSI, Darmstadt

Conclusions

Outline

Question of present interest

- Multi-reference energy density functional method
 - Elements of formalism and difficulties
 - Regularization method and remaining problems
- Conclusions

Outline

- Question of present interest
- 2 Multi-reference energy density functional method
 - Elements of formalism and difficulties
 - Regularization method and remaining problems

Conclusions

Question of present interest

Handling symmetries within an energy density functional method

- *H* characterized by a symmetry group \mathcal{G} [e.g. \vec{P}_{cm} , (J,M), (N,Z), Π ...]
- H and $|\Psi_n^{X_G}\rangle$ are not manipulated explicitly

Density Functional Theory

- Symmetry dilemma is an issue
- Methods have been developed to deal with it, e.g.
 - Symmetrized DFT [A. Görling, PRA 47 (1993) 2783]
 - Symmetry-constrained DFT [H. Fertig, W. Kohn, PRA 62 (2000) 052511]
 - Ensemble DFT [E. K. U. Gross, L. N. Oliveira, W. Kohn, PRA 37 (1988) 2809]

Nuclear Energy Density Functional method

- Symmetries are first broken on purpose to grasp collective correlations
- ② Restoration of symmetries historically inspired from projection techniques
 - Can it be properly formulated without any reference to H and $|\Psi_n^{\chi_g}\rangle$?
 - Does it perform well?

Question of present interest

Handling symmetries within an energy density functional method

- *H* characterized by a symmetry group \mathcal{G} [e.g. \vec{P}_{cm} , (J,M), (N,Z), Π ...]
- *H* and $|\Psi_n^{X_G}\rangle$ are not manipulated explicitly

Density Functional Theory

- Symmetry dilemma is an issue
- Methods have been developed to deal with it, e.g.
 - Symmetrized DFT [A. Görling, PRA 47 (1993) 2783]
 - Symmetry-constrained DFT [H. Fertig, W. Kohn, PRA 62 (2000) 052511]
 - Ensemble DFT [E. K. U. Gross, L. N. Oliveira, W. Kohn, PRA 37 (1988) 2809]

Nuclear Energy Density Functional method

- Symmetries are first broken on purpose to grasp collective correlations
- Restoration of symmetries historically inspired from projection techniques
 - Can it be properly formulated without any reference to H and $|\Psi_n^{\Lambda_G}\rangle$?
 - Does it perform well?

Question of present interest

Handling symmetries within an energy density functional method

- *H* characterized by a symmetry group \mathcal{G} [e.g. \vec{P}_{cm} , (J,M), (N,Z), Π ...]
- H and $|\Psi_n^{X_G}\rangle$ are not manipulated explicitly

Density Functional Theory

- Symmetry dilemma is an issue
- Methods have been developed to deal with it, e.g.
 - Symmetrized DFT [A. Görling, PRA 47 (1993) 2783]
 - Symmetry-constrained DFT [H. Fertig, W. Kohn, PRA 62 (2000) 052511]
 - [E. K. U. Gross, L. N. Oliveira, W. Kohn, PRA 37 (1988) 2809

Nuclear Energy Density Functional method

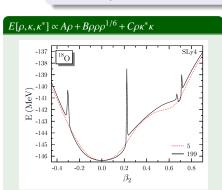
- Symmetries are first broken on purpose to grasp collective correlations
- Restoration of symmetries historically inspired from projection techniques
 - **Can** it be properly formulated without any reference to H and $|\Psi_n^{X_G}\rangle$?
 - Does it perform well?

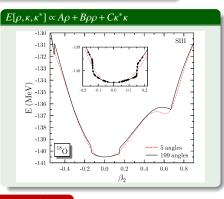
The problem that has led us to go back to the roots

Potential energy as a function of axial quadrupole deformation (β_2)

- Includes the restoration of good *N* and *Z*
- Employs two functionals having different analytic structures

[M. Bender, T. Duguet, D. Lacroix, PRC79 (2009) 044319]





How profound is the problem?

Outline

Question of present interes

- Multi-reference energy density functional method
 - Elements of formalism and difficulties
 - Regularization method and remaining problems
- 3 Conclusions

Outline

Question of present interest

- Multi-reference energy density functional method
 - Elements of formalism and difficulties
 - Regularization method and remaining problems

Conclusions

The overall method in a nutshell

Symmetry group

- $\mathcal{G} = \{R(\alpha) ; \alpha \in D_{\mathcal{G}}\}$ with volume $v_{\mathcal{G}}$ e.g. Lie groups U(1) [N, Z] and SO(3) [J, M]

Building block

- Symmetry-breaking Bogoliubov states |Φ^(g)
- ② Labelled by order parameter $g \equiv |g|e^{i\alpha}$
- Off-diagonal norm and energy kernels

$$N[g',g] \equiv \langle \Phi^{(g')} | \Phi^{(g)} \rangle$$

 $E[g',g] \equiv E[\rho^{g'g}, \kappa^{g'g}, \kappa^{gg'*}]$

is a functional of transition density matrices

$$\rho_{ij}^{g'g} \equiv \frac{\langle \Phi^{(g')} | a_j^\dagger a_i | \Phi^{(g)} \rangle}{\langle \Phi^{(g')} | \Phi^{(g)} \rangle} \quad ; \quad \kappa_{ij}^{g'g} \equiv \frac{\langle \Phi^{(g')} | a_j a_i | \Phi^{(g)} \rangle}{\langle \Phi^{(g')} | \Phi^{(g)} \rangle}$$

which re-sums bulk correlations

Empirical param. (Gogny, Skyrme,...

Two successive levels of implementation

- Single-reference (SR) [looks like DFT]
 - $\blacksquare E_0^{SR}$ invokes E[g,g] only
 - Broken symmetries (N, Z, J, M...)
 - Bulk prop. + limited spectro.
- Multi-reference (MR)
 - \blacksquare E_k^{MR} invokes full E[g',g]
 - Sym. rest. + coll. fluct
 - G.S. correlations + spectro
 - Approx: QRPA, Bohr Hamilt.

The overall method in a nutshell

Symmetry group

- $\mathcal{G} = \{R(\alpha) ; \alpha \in D_{\mathcal{G}}\}$ with volume $v_{\mathcal{G}}$ e.g. Lie groups U(1) [N, Z] and SO(3) [J, M]

Building blocks

- **O** Symmetry-breaking Bogoliubov states $|\Phi^{(g)}\rangle$
- **2** Labelled by order parameter $g \equiv |g| e^{i\alpha}$
- Off-diagonal norm and energy kernels

$$\begin{array}{lll} N[g',g] & \equiv & \langle \Phi^{(g')} | \Phi^{(g)} \rangle \\ E[g',g] & \equiv & E[\rho^{g'g},\kappa^{g'g},\kappa^{gg'*}] \end{array}$$

is a functional of transition density matrices

$$\rho_{ij}^{g'g} \equiv \frac{\langle \Phi^{(g')} | a_j^{\dagger} a_i | \Phi^{(g)} \rangle}{\langle \Phi^{(g')} | \Phi^{(g)} \rangle} \ \ \, ; \ \ \, \kappa_{ij}^{g'g} \equiv \frac{\langle \Phi^{(g')} | a_j a_i | \Phi^{(g)} \rangle}{\langle \Phi^{(g')} | \Phi^{(g)} \rangle} \label{eq:rhoging}$$

which re-sums bulk correlations

Empirical param. (Gogny, Skyrme,...)

Two successive levels of implementation

- O Single-reference (SR) [looks like DFT]
 - E_0^{SR} invokes E[g,g] only
 - Broken symmetries (N, Z, J, M...)
 - Bulk prop. + limited spectro.
- Multi-reference (MR)
 - \blacksquare E_k^{MR} invokes full E[g',g]
 - Sym. rest. + coll. fluct
 - G.S. correlations + spectro
 - Approx: QRPA, Bohr Hamilt.

The overall method in a nutshell

Symmetry group

- $\mathcal{G} \equiv \{R(\alpha) ; \alpha \in D_{\mathcal{G}}\}$ with volume $v_{\mathcal{G}}$ e.g. Lie groups U(1) [N, Z] and SO(3) [J, M]

Building blocks

- **3** Symmetry-breaking Bogoliubov states $|\Phi^{(g)}\rangle$
- **2** Labelled by order parameter $g \equiv |g|e^{i\alpha}$
- Off-diagonal norm and energy kernels

$$N[g',g] \equiv \langle \Phi^{(g')} | \Phi^{(g)} \rangle$$

 $E[g',g] \equiv E[\rho^{g'g}, \kappa^{g'g}, \kappa^{gg'*}]$

is a functional of transition density matrices

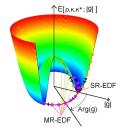
$$\rho_{ij}^{g'g} \equiv \frac{\langle \Phi^{(g')} | a_j^{\dagger} a_i | \Phi^{(g)} \rangle}{\langle \Phi^{(g')} | \Phi^{(g)} \rangle} \quad ; \quad \kappa_{ij}^{g'g} \equiv \frac{\langle \Phi^{(g')} | a_j a_i | \Phi^{(g)} \rangle}{\langle \Phi^{(g')} | \Phi^{(g)} \rangle}$$

which re-sums bulk correlations

Empirical param. (Gogny, Skyrme,...)

Two successive levels of implementation

- Single-reference (SR) [looks like DFT]
 - E_0^{SR} invokes E[g,g] only
 - Broken symmetries (N, Z, J, M...)
 - Bulk prop. + limited spectro.
- Multi-reference (MR)
 - \blacksquare E_k^{MR} invokes full E[g',g]
 - Sym. rest. + coll. fluct.
 - G.S. correlations + spectro.
 - Approx: QRPA, Bohr Hamilt.



The symmetry restoration in more details

Symmetry-restored energies (diagonal in |g|)

Expand off-diagonal kernels over Irreps

$$N[0,\alpha] \equiv \sum_{\lambda ab} \mathcal{N}_{ab}^{\lambda} S_{ab}^{\lambda}(\alpha)$$

$$E[0,\alpha] N[0,\alpha] \equiv \sum_{\lambda ab} \mathcal{E}_{ab}^{\lambda} \mathcal{N}_{ab}^{\lambda} S_{ab}^{\lambda}(\alpha)$$

Extract coefficients for the targeted Irrep

$$\begin{split} \mathcal{N}^{\lambda}_{ab} &= \frac{d_{\lambda}}{v_{\mathcal{G}}} \int_{D_{\mathcal{G}}} dm(\alpha) S^{\lambda*}_{ab}(\alpha) \, N[0,\alpha] \\ \mathcal{E}^{\lambda}_{ab} \, \, \mathcal{N}^{\lambda}_{ab} &= \frac{d_{\lambda}}{v_{\mathcal{G}}} \int_{D_{\mathcal{G}}} dm(\alpha) S^{\lambda*}_{ab}(\alpha) \, E[0,\alpha] \, N[0,\alpha] \; . \end{split}$$

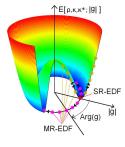
Mix over components spanning the targeted Irrep

$$E_{\lambda k}^{MR} \quad \equiv \quad \mathrm{Min}_{f_a^{\lambda k*}} \left\{ \frac{\sum_{a,b} f_a^{\lambda k*} f_b^{\lambda k} \ \mathcal{E}_{ab}^{\lambda} \ \mathcal{N}_{ab}^{\lambda}}{\sum_{a,b} f_a^{\lambda k*} f_b^{\lambda k} \ \mathcal{N}_{ab}^{\lambda}} \right\} \ .$$

Sum rules at each |g| from $S_{ab}^{\lambda}(0) = \delta_{ab}$

$$1 = \sum_{\lambda} d_{\lambda} \mathcal{N}_{aa}^{\lambda}$$

$$E_{0}^{SR} = \sum_{\lambda} d_{\lambda} \mathcal{E}_{aa}^{\lambda} \mathcal{N}_{aa}^{\lambda}$$



Symmetry restoration formulated without any reference to H and $|\Psi_k^{la}\rangle$ [T. Duguet, J. Sadoudi, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064009]

The symmetry restoration in more details

Symmetry-restored energies (diagonal in |g|)

Expand off-diagonal kernels over Irreps

$$N[0,\alpha] \equiv \sum_{\lambda ab} \mathcal{N}_{ab}^{\lambda} S_{ab}^{\lambda}(\alpha)$$

$$E[0,\alpha] N[0,\alpha] \equiv \sum_{\lambda ab} \mathcal{E}_{ab}^{\lambda} \mathcal{N}_{ab}^{\lambda} S_{ab}^{\lambda}(\alpha)$$

Extract coefficients for the targeted Irrep

$$\mathcal{N}^{\lambda}_{ab} = \frac{d_{\lambda}}{v_{\mathcal{G}}} \int_{D_{\mathcal{G}}} dm(\alpha) S^{\lambda*}_{ab}(\alpha) N[0, \alpha]$$

$$\mathcal{E}^{\lambda}_{ab} \mathcal{N}^{\lambda}_{ab} = \frac{d_{\lambda}}{v_{\mathcal{G}}} \int_{D_{\mathcal{G}}} dm(\alpha) S^{\lambda*}_{ab}(\alpha) E[0, \alpha] N[0, \alpha] .$$

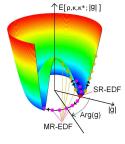
Mix over components spanning the targeted Irrep

$$E_{\lambda k}^{MR} \quad \equiv \quad \mathrm{Min}_{f_a^{\lambda k*}} \left\{ \frac{\sum_{a,b} f_a^{\lambda k*} f_b^{\lambda k} \ \mathcal{E}_{ab}^{\lambda} \ \mathcal{N}_{ab}^{\lambda}}{\sum_{a,b} f_a^{\lambda k*} f_b^{\lambda k} \ \mathcal{N}_{ab}^{\lambda}} \right\} \ .$$

Sum rules at each |g| from $S_{ab}^{\lambda}(0) = \delta_{ab}$

$$1 = \sum_{\lambda} d_{\lambda} \mathcal{N}_{aa}^{\lambda}$$

$$E_{0}^{SR} = \sum_{\lambda} d_{\lambda} \mathcal{E}_{aa}^{\lambda} \mathcal{N}_{aa}^{\lambda}$$



Symmetry restoration formulated without any reference to H and $|\Psi_k^{\lambda a}\rangle$ [T. Duguet, J. Sadoudi, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064009]

The symmetry restoration in more details

Symmetry-restored energies (diagonal in |g|)

Expand off-diagonal kernels over Irreps

$$N[0,\alpha] \equiv \sum_{\lambda ab} \mathcal{N}_{ab}^{\lambda} S_{ab}^{\lambda}(\alpha)$$

$$E[0,\alpha] N[0,\alpha] \equiv \sum_{\lambda ab} \mathcal{E}_{ab}^{\lambda} \mathcal{N}_{ab}^{\lambda} S_{ab}^{\lambda}(\alpha)$$

Extract coefficients for the targeted Irrep

$$\begin{split} \mathcal{N}^{\lambda}_{ab} &= \frac{d_{\lambda}}{v_{\mathcal{G}}} \int_{D_{\mathcal{G}}} dm(\alpha) S^{\lambda*}_{ab}(\alpha) \, N[0,\alpha] \\ \mathcal{E}^{\lambda}_{ab} \, \, \mathcal{N}^{\lambda}_{ab} &= \frac{d_{\lambda}}{v_{\mathcal{G}}} \int_{D_{\mathcal{G}}} dm(\alpha) S^{\lambda*}_{ab}(\alpha) \, E[0,\alpha] \, N[0,\alpha] \; . \end{split}$$

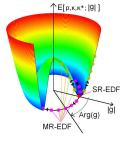
Mix over components spanning the targeted Irrep

$$E_{\lambda k}^{MR} \quad \equiv \quad \mathrm{Min}_{f_a^{\lambda k*}} \left\{ \frac{\sum_{a,b} f_a^{\lambda k*} f_b^{\lambda k} \ \mathcal{E}_{ab}^{\lambda} \ \mathcal{N}_{ab}^{\lambda}}{\sum_{a,b} f_a^{\lambda k*} f_b^{\lambda k} \ \mathcal{N}_{ab}^{\lambda}} \right\} \ .$$

Sum rules at each |g| from $S_{ab}^{\lambda}(0) = \delta_{ab}$

$$1 = \sum_{\lambda} d_{\lambda} \mathcal{N}_{aa}^{\lambda}$$

$$E_{0}^{SR} = \sum_{\lambda} d_{\lambda} \mathcal{E}_{aa}^{\lambda} \mathcal{N}_{aa}^{\lambda}$$



Symmetry restoration formulated without any reference to H and $|\Psi_k^{\lambda a}\rangle$

[T. Duguet, J. Sadoudi, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064009]

Example

Particle number restoration (PNR) (at fixed |g|)

- **1** U(1) group $\{R(\varphi) = e^{iN\varphi} ; \varphi \in [0, 2\pi]\}$
- Fourier decomposition of kernels on Irreps

$$\begin{array}{rcl} N[0,\varphi] & \equiv & \displaystyle \sum_{\mathbf{N} \in \mathbb{Z}} \mathcal{N}_{\mathbf{N}} \, e^{i\mathbf{N}\varphi} \\ E[0,\varphi] \, N[0,\varphi] & \equiv & \displaystyle \sum_{\mathbf{N} \in \mathbb{Z}} \mathcal{E}_{\mathbf{N}} \, \mathcal{N}_{\mathbf{N}} \, e^{i\mathbf{N}\varphi} \end{array}$$

Particle-number-restored energies

$$\mathcal{N}_{N} = \frac{1}{2\pi} \int_{0}^{2\pi} d\varphi e^{-iN\varphi} N[0,\varphi]$$

$$\mathcal{E}_{N} = \frac{\mathcal{N}_{N}^{-1}}{2\pi} \int_{0}^{2\pi} d\varphi e^{-iN\varphi} E[0,\varphi] N[0,\varphi]$$

No reference made to a projected state

Sum rules at each |g|

$$E_0^{\rm SR} \equiv \sum_{\rm Ne} \mathcal{E}_{\rm N} \, \mathcal{N}_{\rm N}$$

Functional form of kernel E[g',g]

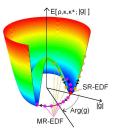
Following properties are mandatory

- \bullet \bullet \bullet \bullet \bullet real and scalar under $R(\alpha) \in \mathcal{G}$
- opp.
- QRPA recovered as harmonic limit

Choice $E[g',g] \equiv E[\rho^{g'g}, \kappa^{g'g}, \kappa^{gg'*}]$

- Satisfies all the above
- Onsistent with $E_{\mathcal{H}}[g',g] = \frac{\langle \Phi^{(g')} | \mathcal{H} | \Phi^{(g)} \rangle}{\langle \Phi^{(g')} | \Phi^{(g)} \rangle}$

[L. M. Robledo, JPG 37 (2010) 064020]



Example

Particle number restoration (PNR) (at fixed |g|)

- Fourier decomposition of kernels on Irreps

$$\begin{array}{rcl} N[0,\varphi] & \equiv & \displaystyle \sum_{\mathrm{N} \in \mathbb{Z}} \mathcal{N}_{\mathrm{N}} \, e^{i \mathrm{N} \varphi} \\ E[0,\varphi] \, N[0,\varphi] & \equiv & \displaystyle \sum_{\mathrm{N} \in \mathbb{Z}} \mathcal{E}_{\mathrm{N}} \, \mathcal{N}_{\mathrm{N}} \, e^{i \mathrm{N} \varphi} \end{array}$$

Particle-number-restored energies

$$\mathcal{N}_{N} = \frac{1}{2\pi} \int_{0}^{2\pi} d\varphi e^{-iN\varphi} N[0,\varphi]$$

$$\mathcal{E}_{N} = \frac{\mathcal{N}_{N}^{-1}}{2\pi} \int_{0}^{2\pi} d\varphi e^{-iN\varphi} E[0,\varphi] N[0,\varphi]$$

No reference made to a projected state

Sum rules at each |g|

$$E_0^{SR} \equiv \sum_{N \in \mathbb{Z}} \mathcal{E}_N \, \mathcal{N}_N$$

Functional form of kernel E[g',g]

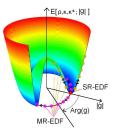
Following properties are mandatory

- \mathcal{E}_k^{MR} real and scalar under $R(\alpha) \in \mathcal{G}$
- $\mathbf{Q} \mu^{SR}$ recovered through Kamlah
- QRPA recovered as harmonic limit

Choice $E[g',g] \equiv E[\rho^{g'g}, \kappa^{g'g}, \kappa^{gg'*}]$

- Satisfies all the above
- Consistent with $E_{\mathcal{H}}[g',g] = \frac{\langle \Phi^{(g')}|\mathcal{H}|\Phi^{(g)}\rangle}{\langle \Phi^{(g')}|\Phi^{(g)}\rangle}$

[L. M. Robledo, JPG 37 (2010) 064020]



Particle number restoration (PNR) (at fixed |g|)

- **1** U(1) group $\{R(\varphi) = e^{iN\varphi} ; \varphi \in [0, 2\pi]\}$
- Fourier decomposition of kernels on Irreps

$$\begin{array}{rcl} N[0,\varphi] & \equiv & \displaystyle \sum_{\mathrm{N} \in \mathbb{Z}} \mathcal{N}_{\mathrm{N}} \, e^{i \mathrm{N} \varphi} \\ E[0,\varphi] \, N[0,\varphi] & \equiv & \displaystyle \sum_{\mathrm{N} \in \mathbb{Z}} \mathcal{E}_{\mathrm{N}} \, \mathcal{N}_{\mathrm{N}} \, e^{i \mathrm{N} \varphi} \end{array}$$

Particle-number-restored energies

$$\mathcal{N}_{N} = \frac{1}{2\pi} \int_{0}^{2\pi} d\varphi e^{-iN\varphi} N[0,\varphi]$$

$$\mathcal{E}_{N} = \frac{\mathcal{N}_{N}^{-1}}{2\pi} \int_{0}^{2\pi} d\varphi e^{-iN\varphi} E[0,\varphi] N[0,\varphi]$$

No reference made to a projected state

Sum rules at each |g|

$$E_0^{SR} \equiv \sum_{N \in \mathbb{Z}} \mathcal{E}_N \, \mathcal{N}_N$$

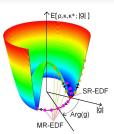
Functional form of kernel E[g',g]

Following properties are mandatory

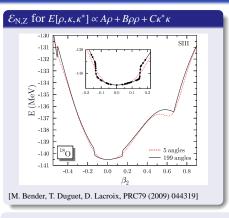
Is that sufficient?

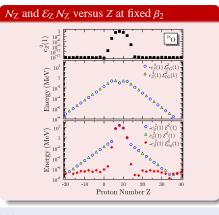
- Satisfies all the above
- Onsistent with $E_{\mathcal{H}}[g',g] = \frac{\langle \Phi^{(g')}|\mathcal{H}|\Phi^{(g)}\rangle}{\langle \Phi^{(g')}|\Phi^{(g)}\rangle}$

[L. M. Robledo, JPG 37 (2010) 064020]



Divergences and steps in PNR calculations





- Divergencies and finite steps in PNR calculations [J. Dobaczewski et al., PRC76 (2007) 054315]
- Relate to non-analytic character of $E[\rho^{0\varphi}, \kappa^{0\varphi}, \kappa^{\varphi 0*}]N[0, \varphi]$ over \mathbb{C}^* -plane with $e^{i\varphi} \equiv z$
- Due to self-interaction/pairing in $E[\rho^{0\varphi}, \kappa^{0\varphi}, \kappa^{\varphi^{0*}}]$ [M. Bender, T. Duguet, D. Lacroix, PRC79 (2009) 044319]
 - Similar problems for other MR modes, e.g. angular momentum restoration

Outline

Question of present interest

- Multi-reference energy density functional method
 - Elements of formalism and difficulties
 - Regularization method and remaining problems
- Conclusions

Regularization method

[D. Lacroix, T. Duguet, M. Bender, PRC79 (2009) 044318]

H-based kernel in a specific basis

$$E_{\mathcal{H}}^{\mathrm{GWT}}[\rho^{g'g},\kappa^{g'g},\kappa^{gg'*}] \equiv E_{\mathcal{H}}^{\mathrm{SWT}}[g',g] + E^{\mathrm{C}}[g',g]$$

 \checkmark $E^{\mathbb{C}}[g',g] = 0$ for \mathcal{H} -based kernel

 \mathbf{X} $\neq 0$ and non-analytic otherwise

Regularized energy kernel

$$E_{\mathsf{REG}}[g',g] \equiv E[\rho^{g'g},\kappa^{g'g},\kappa^{gg'*}] - E^{\mathsf{C}}[g',g]$$

The method is originally designed

- For any MR mixing, i.e. any |g| and α
- For polynomial kernels only

[T. Duguet et al., PRC79 (2009) 044320]

Regularization method

[D. Lacroix, T. Duguet, M. Bender, PRC79 (2009) 044318]

H-based kernel in a specific basis

$$E_{\mathcal{H}}^{\text{GWT}}[\rho^{g'g},\kappa^{g'g},\kappa^{gg'*}] \equiv E_{\mathcal{H}}^{\text{SWT}}[g',g] + E^{\text{C}}[g',g]$$

- \checkmark $E^{C}[g',g] = 0$ for \mathcal{H} -based kernel
- \star \neq 0 and non-analytic otherwise

Regularized energy kernel

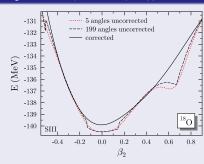
$$E_{\text{REG}}[g',g] \equiv E[\rho^{g'g}, \kappa^{g'g}, \kappa^{gg'*}] - E^{C}[g',g]$$

The method is originally designed

- For any MR mixing, i.e. any |g| and α
- For polynomial kernels only

[T. Duguet et al., PRC79 (2009) 044320]

Regularized $\mathcal{E}_{N,Z}$ for $E \propto A\rho + B\rho\rho + C\kappa^*\kappa$



[M. Bender, T. Duguet, D. Lacroix, PRC79 (2009) 044319]

Regularized results

- are free from steps and divergences
- are modified *away* from them
- ✓ are independent of the discretization
- are modified by about 1 MeV
- ✓ provide $\mathcal{E}_N \mathcal{N}_N = 0$ for $N \le 0$

Regularization method

[D. Lacroix, T. Duguet, M. Bender, PRC79 (2009) 044318]

H-based kernel in a specific basis

$$E_{\mathcal{H}}^{\text{GWT}}[\rho^{g'g},\kappa^{g'g},\kappa^{gg'*}] \equiv E_{\mathcal{H}}^{\text{SWT}}[g',g] + E^{\text{C}}[g',g]$$

 \checkmark $E^{\mathbb{C}}[g',g] = 0$ for \mathcal{H} -based kernel

 \neq 0 and non-analytic otherwise

Regularized energy kernel

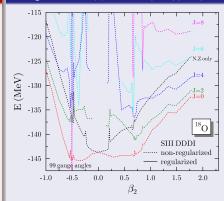
$$E_{\mathsf{REG}}[g',g] \equiv E[\rho^{g'g},\kappa^{g'g},\kappa^{gg'*}] - E^{\mathsf{C}}[g',g]$$

The method is originally designed

- For any MR mixing, i.e. any |g| and α
- For polynomial kernels only

[T. Duguet et al., PRC79 (2009) 044320]

Unregularized $\mathcal{E}_{N,Z,J}$ for $E \propto A\rho + B\rho\rho + C\rho\kappa^*\kappa$



[M. Bender et al., unpublished]

Unregularized results

- ✗ display steps and divergences
- **x** strongly depend on the discretization
- **X** provide $\mathcal{E}_{N,Z,J} \mathcal{N}_{N,Z,J} \neq 0$ for $N,Z \leq 0$

Regularization method

[D. Lacroix, T. Duguet, M. Bender, PRC79 (2009) 044318]

H-based kernel in a specific basis

$$E_{\mathcal{H}}^{\text{GWT}}[\rho^{g'g},\kappa^{g'g},\kappa^{gg'*}] \equiv E_{\mathcal{H}}^{\text{SWT}}[g',g] + E^{\text{C}}[g',g]$$

 \checkmark $E^{C}[g',g] = 0$ for \mathcal{H} -based kernel

 \neq 0 and non-analytic otherwise

Regularized energy kernel

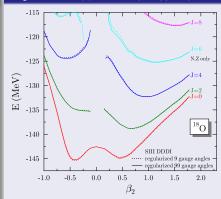
$$E_{\text{REG}}[g',g] \equiv E[\rho^{g'g},\kappa^{g'g},\kappa^{gg'*}] - E^{C}[g',g]$$

The method is originally designed

- For any MR mixing, i.e. any |g| and α
- For polynomial kernels only

[T. Duguet et al., PRC79 (2009) 044320]

Regularized $\mathcal{E}_{N,Z,J}$ for $E \propto A\rho + B\rho\rho + C\rho\kappa^*\kappa$



[M. Bender et al., unpublished]

Regularized results

- ✓ are free from steps and divergences
- **x** slowly depend on the discretization
- **x** provide $\mathcal{E}_{N,Z,J} \mathcal{N}_{N,Z,J} \neq 0$ for $N,Z \leq 0$

Regularization method

[D. Lacroix, T. Duguet, M. Bender, PRC79 (2009) 0443181

H-based kernel in a specific basis

$$E_{\mathcal{H}}^{\text{GWT}}[\rho^{g'g}, \kappa^{g'g}, \kappa^{gg'*}] \equiv E_{\mathcal{H}}^{\text{SWT}}[g', g] + E^{\text{C}}[g', g]$$

 \checkmark $E^{\mathbb{C}}[g',g] = 0$ for \mathcal{H} -based kernel

≠ 0 and non-analytic otherwise

Regularized energy kernel

$$E_{\mathrm{REG}}[g',g] \equiv E[\rho^{g'g},\kappa^{g'g},\kappa^{gg'*}] - E^{\mathrm{C}}[g',g]$$

The method is originally designed

- For any MR mixing, i.e. any |g| and α
- For polynomial kernels only

[T. Duguet et al., PRC79 (2009) 044320]

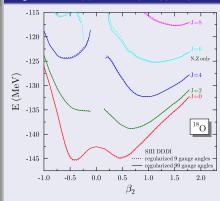
Alternative route ahead [J. Sadoudi et al., unpublished]

Rely strictly on *H*-based kernel

New kernel under construction

- Challenge to obtain good phenomenology

Regularized $\mathcal{E}_{N,Z,J}$ for $E \propto A\rho + B\rho\rho + C\rho\kappa^*\kappa$



[M. Bender et al., unpublished]

Regularized results

- are free from steps and divergences
- slowly depend on the discretization
- provide $\mathcal{E}_{N,Z,J} \mathcal{N}_{N,Z,J} \neq 0$ for $N,Z \leq 0$

Outline

- Question of present interest
- Multi-reference energy density functional method
 - Elements of formalism and difficulties
 - Regularization method and remaining problems
- Conclusions

Summary and perspectives

Multi-reference nuclear energy density functional formalism

- Mathematically well formulated without any reference to H and $|\Psi_n^{X_G}\rangle$
- Physical constraints need to be added that are not easy to formulate
- New regularization method
 - Improves the situation dramatically
 - Is not free from all problems

Way(s) out?

- Employ approximations (QRPA, Bohr Hamiltonian...) that "bypass" the problem
- \bigcirc Rely strictly on \mathcal{H} -based kernel, i.e. work within effective projected HFB method
- Design off-diagonal energy kernel from appropriate ab-initio method
 - Symmetry-restored unrestricted MBPT [T. Duguet, G. Ripka, unpublished]
 - Leads to and angle-dependent/orbital-dependent energy kernel
- leg. E.g. see talk by T. Lesinski (Friday)

Symmetry dilemma in DFT

What about symmetries in DFT?

- Symmetry group \mathcal{G} of H and lowest eigenstate $|\Psi_i^{PJMN...}\rangle$ of given irrep
 - \bullet $\rho_{\sigma}(\vec{r})$ is not a scalar of \mathcal{G} (except for \hat{N})
 - $v_{KS}^{\sigma}(\vec{r})$ is not a scalar of \mathcal{G}
 - **(a)** $\{\varphi_{\alpha}\}$ do not carry quantum numbers $l, j, m \dots$
 - Kohn-Sham state $|\Phi_i\rangle$ is not an eigenstate of $\hat{\vec{P}},\hat{J}^2...$

Crucial points about symmetries

- At the minimum of $E \rho_{\sigma}(\vec{r})$ must reflect quantum numbers of $|\Psi_i^{PJMN...}\rangle$
 - Symmetry breaking is outside the frame of Hohenberg-Kohn theorem
- Kohn-Sham state $|\Phi_i\rangle$ should not carry quantum numbers of $|\Psi_i^{PJMN...}\rangle$
 - How to maintain the symmetry content of $\rho_{\sigma}(\vec{r})$ through the iterations?

Solution to symmetry dilemma

Symmetrized DFT

- Keep $|\Phi_i^{PJMN...}\rangle$ with same quantum numbers as eigenstate
- HK theorem + KS scheme in terms of the scalar part of the density
- A. Görling, PRA 47 (1993) 2783

Symmetry-constrained DFT

- Focus on symmetries of $\rho_{\sigma}(\vec{r})$ rather than of $|\Phi_i\rangle$
- Use non-scalar $v_{\sigma}^{KS}(\vec{r})$ + constrained minimization on $\rho_{\sigma}(\vec{r})$
- H. Fertig, W. Kohn, PRA 62 (2000) 052511

Ensemble DFT

- Symmetry-preserving statistical density operator built from $|\Phi_i\rangle$
- HK theorem + KS scheme based on scalar ensemble density
- E. K. U. Gross, L. N. Oliveira, W. Kohn, PRA 37 (1988) 2809