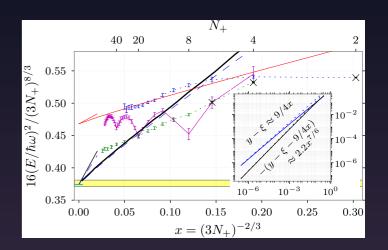
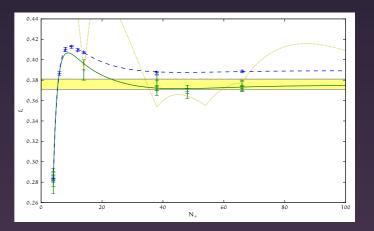
Static and Dynamic Properties near Unitary from DFT

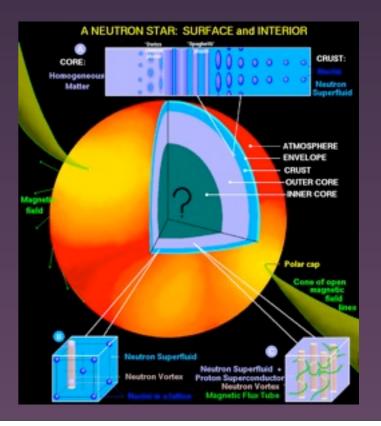
Michael McNeil Forbes Institute for Nuclear Theory (INT) University of Washington, Seattle, WA

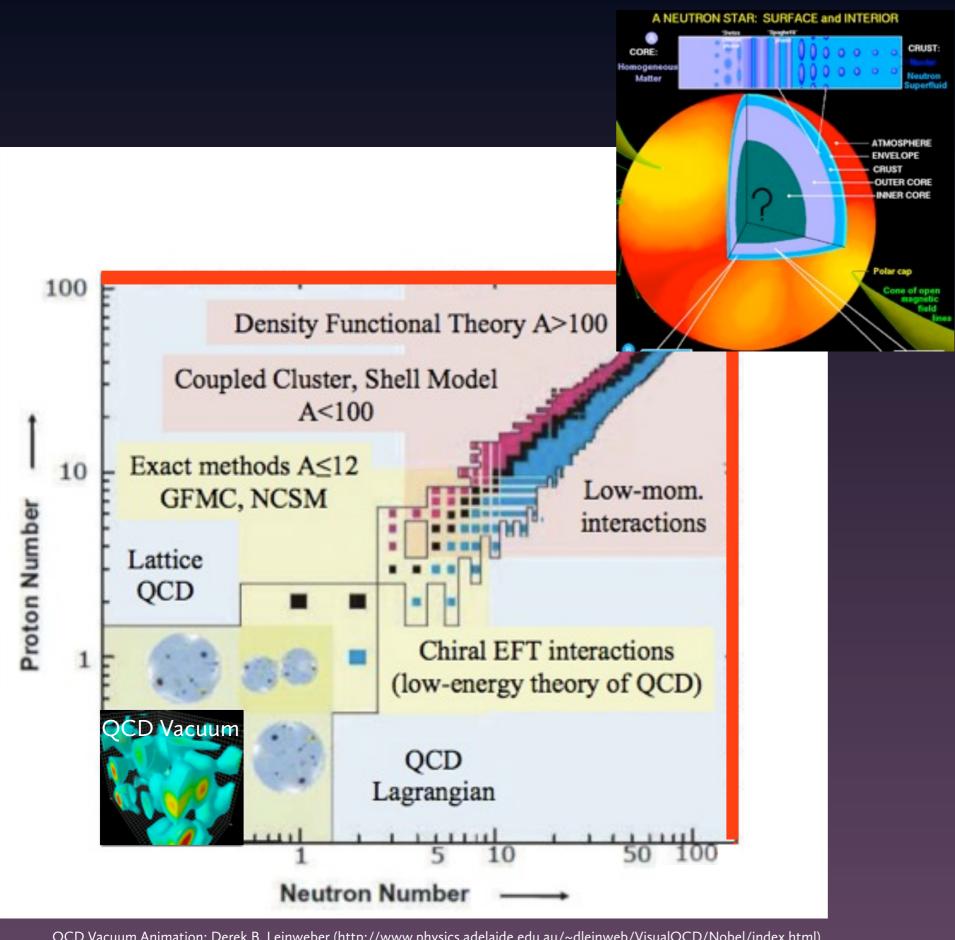
Outline

- Dft for Unitary Fermi Gas
 - Static: boxes and traps
 - Gradient corrections
- Gross-Pitaevskii–Equation (GPE)
 - Works for low-energy Unitary Fermi Gas!
 - "Laboratory on your Laptop"
 - scale up to neutron stars (glitching)





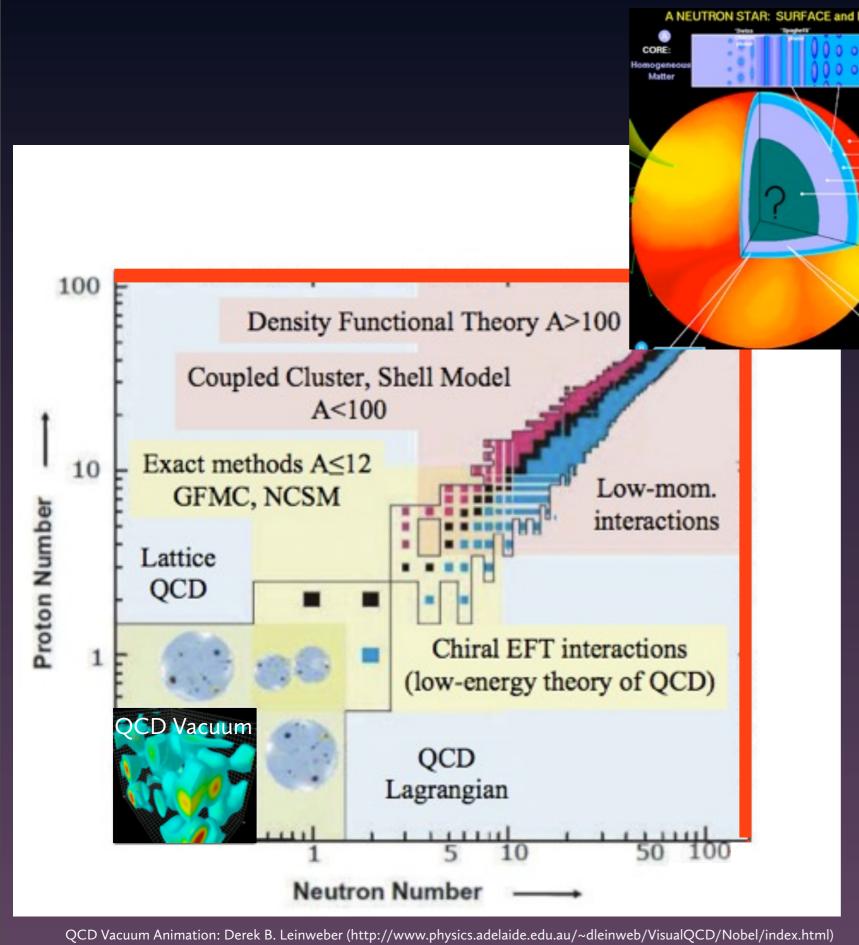




The Nuclear Landscape

QCD Vacuum Animation: Derek B. Leinweber (http://www.physics.adelaide.edu.au/~dleinweb/VisualQCD/Nobel/index.html)

Neutron Star Structure: (Dany Page) Landscape: (modified from a slide of A. Richter)



QCD Vacuum Animation: Derek B. Leinweber (http://www.physics.adelaide.edu.au/~dleinweb/VisualQCD/Nobel/index.html)

Neutron Star Structure: (Dany Page) Landscape: (modified from a slide of A. Richter)

• Lattice QCD, nucleons, interactions

ATMOSPHERE ENVELOPE

OUTER CORE

- QMC, etc. small to medium nuclei
- DFT, medium to large nuclei
- Neutron stars?Molecular DynamicsHydrodynamics

Cold Atoms Benchmarking

- Theoretically clean and simple (universal)
- Well constrained
- Remarkably diverse phase structure
- Convergence of theory, simulation and experiment
- Benchmark for many-body techniques

Unitary Fermi Gas (UFG)

$$\begin{split} \widehat{\mathcal{H}} &= \int \left(\widehat{\mathbf{a}}^{\dagger} \widehat{\mathbf{a}} \mathbf{E}_{a} + \widehat{\mathbf{b}}^{\dagger} \widehat{\mathbf{b}} \mathbf{E}_{b} \right) - g \int_{\Lambda} \widehat{\mathbf{a}}^{\dagger} \widehat{\mathbf{b}}^{\dagger} \widehat{\mathbf{b}} \widehat{\mathbf{a}} \\ \mathbf{E}_{a,b} &= \frac{p^{2}}{2m} - \mu_{a,b}, \quad \mu_{\pm} = \frac{\mu_{a} \pm \mu_{b}}{2} \end{split}$$

- Take regulator $\lambda \to \infty$ and coupling $g \to 0$ to fix s-wave scattering length $a^{-1} \propto (\lambda g^{-1}) = 0$ (unitary limit)
- Universal physics:
 - $\mathcal{E}(\rho) = \overline{\xi \mathcal{E}_{FG}(\rho) \propto \rho^{5/3}}, \ \xi = 0.376(5)$
- Good model of dilute neutron matter in neutron stars

Density Functional Theory (DFT)

• The (exact) ground state density in any external potential V(x) minimizes a functional (Hohenberg Kohn):

$$\int d^3x \{\mathcal{E}[n(x)] + V(x)n(x)\}$$

- Functional may be complicated (non-local)
 - · Need to find physically motivated approximations

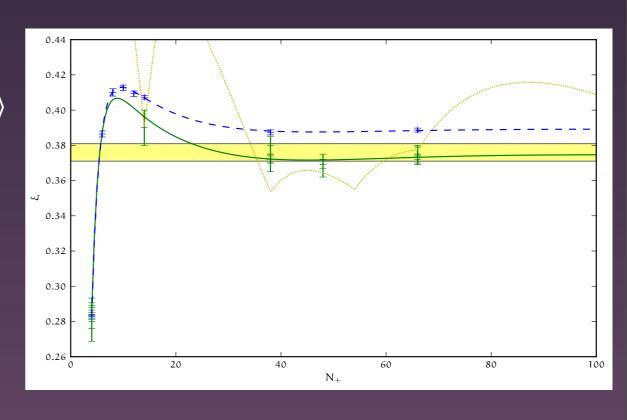
SLDA: Superfluid Local Density Approximation

$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \alpha \frac{\tau}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10\mathbf{m}\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

Three densities:

$$n \approx \langle a^{\dagger} a \rangle$$
, $\tau \approx \langle \nabla a^{\dagger} \nabla a \rangle$, $\nu \approx \langle ab \rangle$

- Three parameters:
 - Effective mass (m/α)
 - Hartree (β) , Pairing (g)



Forbes, Gandolfi, Gezerlis (2012)

BdG: contained in SLDA

$$\mathcal{E}(n,\tau,\nu) = \alpha \frac{\tau}{m} + \beta \frac{(3\pi^2 n)^{5/3}}{10m\pi^2} + g_{\text{eff}} \nu^{\dagger} \nu$$

- Variational: $\mathcal{E} = \langle H \rangle$ (minimize over Gaussian states)
- Bogoliubov-de Gennes (вdg) contained in slda
- Unit mass $(\alpha=1)$
- No Hartree term $(\beta=0)$
 - (No polaron properties)

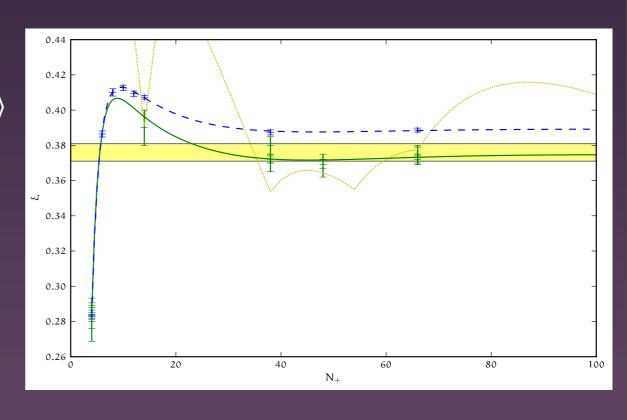
SLDA: Superfluid Local Density Approximation

$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \alpha \frac{\tau}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10\mathbf{m}\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

Three densities:

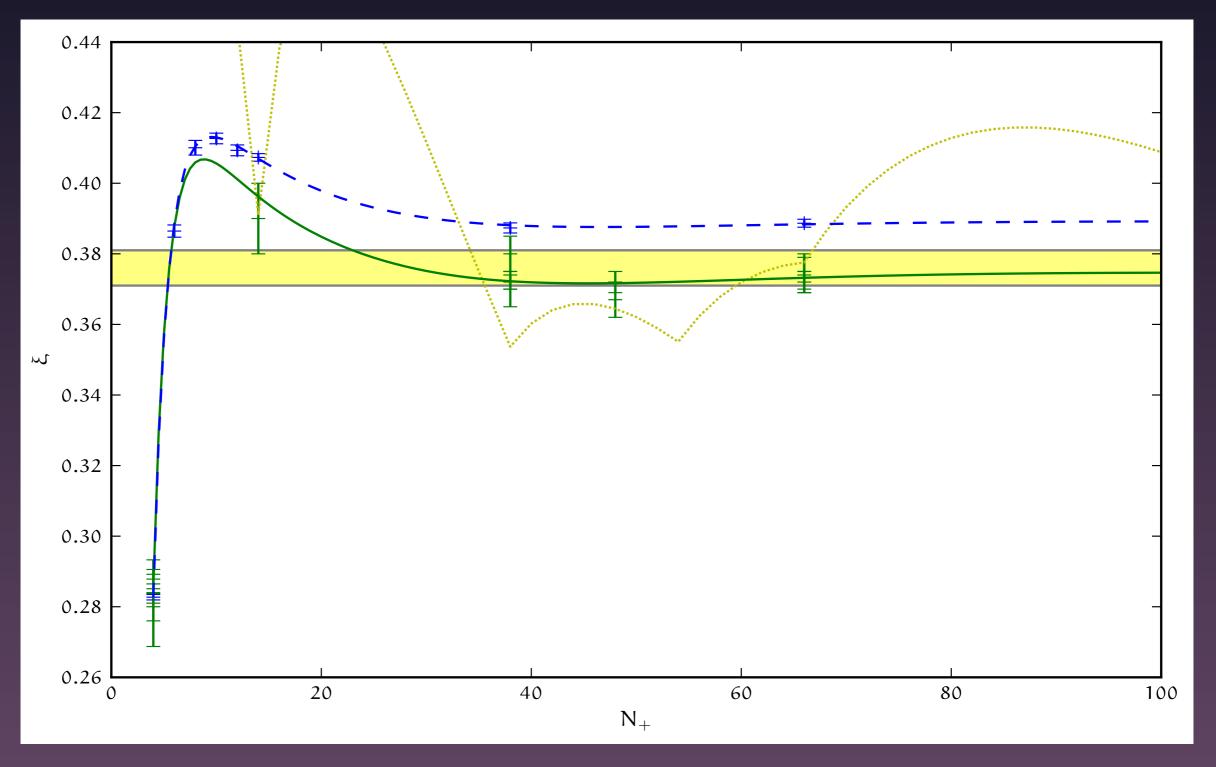
$$n\approx\langle a^{\dagger}a\rangle$$
, $\tau\approx\langle\nabla a^{\dagger}\nabla a\rangle$, $\nu\approx\langle ab\rangle$

- Three parameters:
 - Effective mass (m/α)
 - Hartree (β) , Pairing (g)



Forbes, Gandolfi, Gezerlis (2012)

SLDA: Superfluid Local

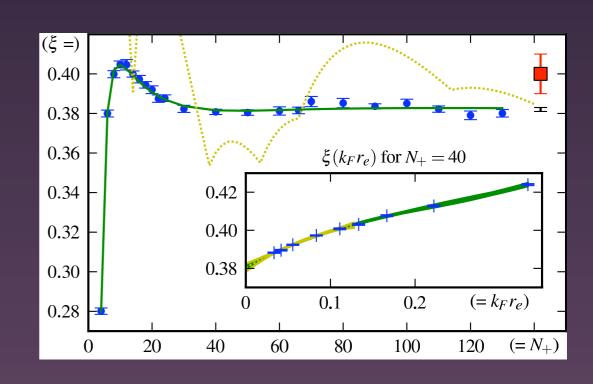


Forbes, Gandolfi, Gezerlis (2012)

SLDA: Fit to QMC using reff = 0 Extrapolation

$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \alpha \frac{\tau}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10m\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

- Three parameters, but
- Independent fits of each N
 - (lots of parameters)
- Can we model range?



Forbes, Gandolfi, Gezerlis (2011, 2012)

Fit directly to QMC

$$\mathcal{E}(\mathbf{n}, \mathbf{\tau}, \mathbf{v}) = \alpha \frac{\mathbf{\tau}}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10\mathbf{m}\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

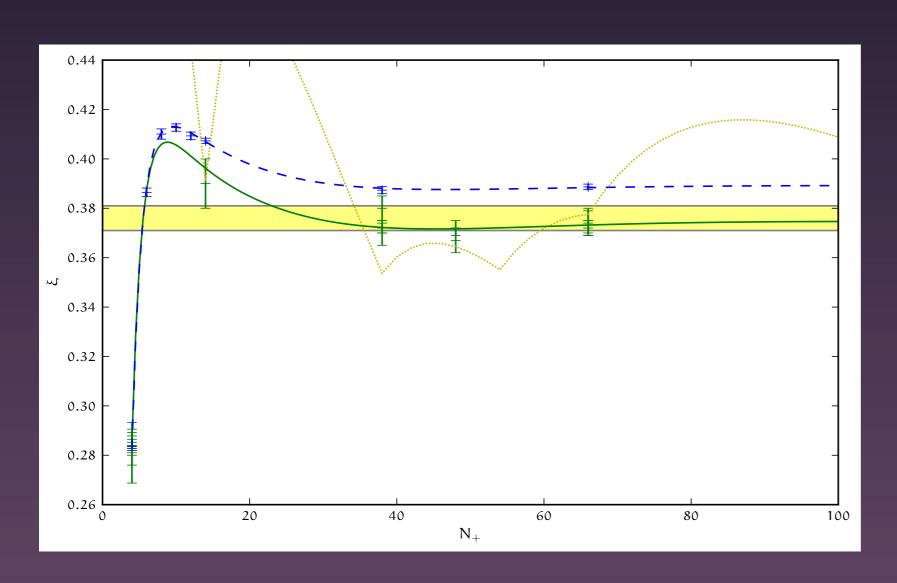
- Each parameter becomes a quadratic polynomial:
 - $\alpha(k_F r_e)$, $\beta(k_F r_e)$, $\gamma(k_F r_e)$
- we actually use physical parameters $\xi(k_F r_e)$, $\Delta(k_F r_e)$, $\alpha(k_F r_e)$
- •9 total parameters for all N

Fit directly to QMC

$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \alpha \frac{\tau}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10m\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

- Not complete story for modeling range:
 - Does not regulate theory
 - No structure for gap (Δ_p) probably requires non-local functional

Fit slda to box qmc

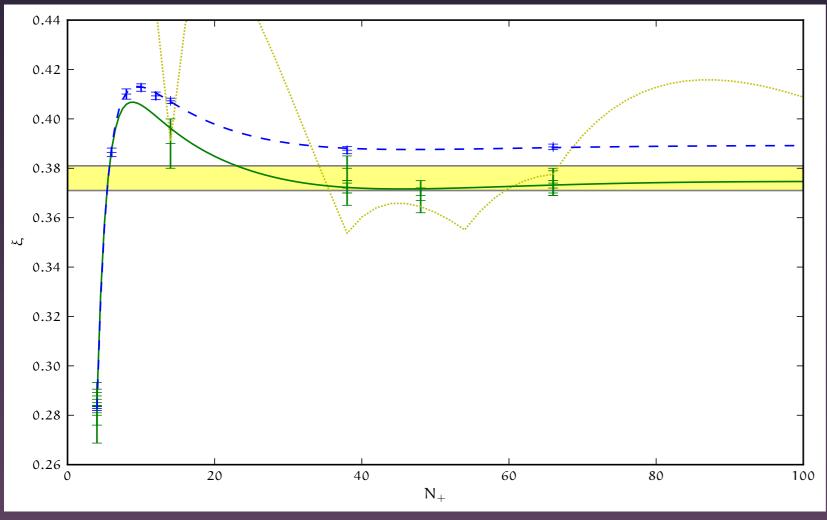


- Fit 60 QMC with 9 parameter model
- Directly use QMC with sub-percent errors
 - reduced $\chi^2 = 6$

Forbes, Gandolfi, Gezerlis PRL (2011)

SLDA parameters

$$\alpha, \xi, \eta = \alpha_0 + \alpha_1 k_F r_e + \alpha_2 (k_F r_e)^2$$



Forbes, Gandolfi, Gezerlis (2012)

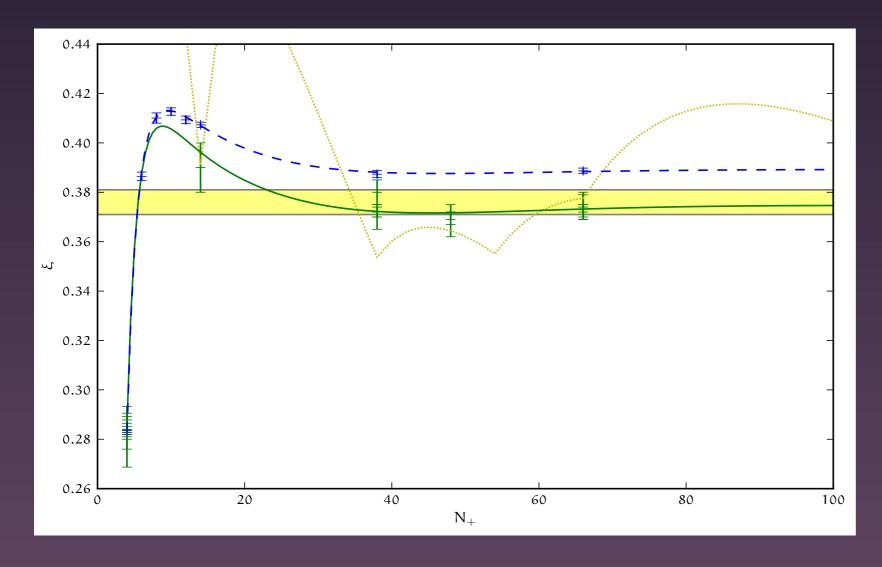
 $\xi = \xi + (k_F r_e)S$ S = 0.12(1)

 a_0 \mathfrak{a}_2 ξ_{PT} 0.3903(7)0.00(3)0.121(10)0.3911(4)0.111(3) ξ_{2G} 0.3890(4)0.128(4)-0.06(1)0.3900(3)0.111(2)0.99(3)3(1) -2.1(4) η_{PT} -0.85(7)0.90(1)-0.84(3)0.00(3)0.879(7) η_{2G} -0.82(4)0.875(8)-1.6(4)1.34(2)5(2) α_{PT} -0.71(8)1.303(10) 1.292(7)-0.73(6)0.1(2) α_{2G} -0.69(3)1.289(7)

Universal slope

SLDA parameters

$$\alpha, \xi, \eta = \alpha_0 + \alpha_1 k_F r_e + \alpha_2 (k_F r_e)^2$$



Forbes, Gandolfi, Gezerlis (2012)

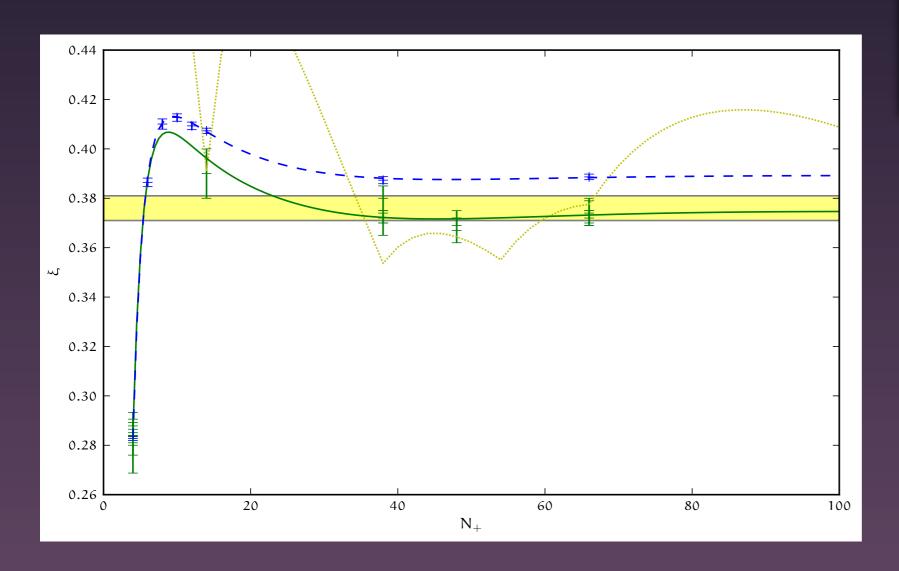
	a_0	\mathfrak{a}_1	\mathfrak{a}_2
ξ _{PT}	0.3903(7)	0.121(10)	0.00(3)
	0.3911(4)	0.111(3)	
ξ _{2G}	0.3890(4)	0.128(4)	-0.06(1)
	0.3900(3)	0.111(2)	
η _{PT}	0.99(3)	-2.1(4)	3(1)
	0.90(1)	-0.85(7)	
η _{2G}	0.879(7)	-0.84(3)	0.00(3)
	0.875(8)	-0.82(4)	
α_{PT}	1.34(2)	-1.6(4)	5(2)
	1.303(10)	-0.71(8)	
α_{2G}	1.292(7)	-0.73(6)	0.1(2)
	1.289(7)	-0.69(3)	

Gap and inverse mass seem too large

Limitation of fixed node approximation?

Unbiased Slda fit at

$$r_{\text{eff}}=0$$



Forbes, Gandolfi, Gezerlis (2012)

$\overline{N_+}$	ξ_{N_+}	Method
2	-0.415332919 · · ·	exact (see section II C)
4	0.288(3), 0.286(3)	exact diagonalization [18]
"	0.28(1)	AFMC [18]
"	0.280(4)	AFMC [12]
14	0.39(1)	AFMC [12]
38	0.370(5), 0.372(2), 0.380(5)	AFMC [12]
48	0.372(3), 0.367(5)	AFMC [12]
66	0.374(5), 0.372(3), 0.375(5)	AFMC [12]
10 ⁶	0.376(5)	experiment [5]

Fit to unbaised results

•
$$\xi = 0.3742(5)$$

•
$$\Delta = 0.65(1)$$

•
$$\alpha = 1.104(8)$$

•
$$\chi^2 = 0.3$$

Generalizations?

$$\mathcal{E}(n,\tau,\nu) = \alpha \frac{\tau}{m} + \beta \frac{(3\pi^2 n)^{5/3}}{10m\pi^2} + g_{\text{eff}} \nu^{\dagger} \nu$$

 In principle, could have functions of the dimensionless quantity:

$$\frac{\alpha \frac{\tau}{m} + g v^{\dagger} v}{n^{5/3}}$$

No evidence that this complication is needed yet

Gradient Corrections?

$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \left(\alpha \frac{\tau}{\mathbf{m}} + g \mathbf{v}^{\dagger} \mathbf{v}\right) + \beta \mathcal{E}_{FG}(\mathbf{n}) + \frac{\delta \lambda}{8m} \frac{(\nabla \mathbf{n})^2}{\mathbf{n}}$$

- Leading order gradient corrections (Weizäcker term)
 - · Has no effect (unconstrained by) previous box results

Low Energy Theory

$$\begin{split} \mathcal{L}_{LO+NLO} &= \xi^{-3/2} P_{FG}(X) + c_1 m^{1/2} \frac{(\nabla X)^2}{\sqrt{X}} + c_2 \frac{(\nabla^2 \phi)^2 - 9 m \nabla^2 A_0}{\sqrt{m}} \sqrt{X} \\ &X = \mu - V(t, \vec{x}) - \partial_t \phi - \frac{(\nabla \phi)^2}{2m} & \langle \alpha b \rangle = |\Delta| e^{2\iota \phi} \end{split}$$

- Low energy theory of phonons (Son and Wingate 2006)
- Strongly constrained by General Coordinate Covariance
 - generalizes Galilean covariance
 - reduces NLO to 2 new coefficients c_1 , c_2
- Three universal coefficients:
 - ξ , C1, C2 (I prefer $c_{\chi}=-6\pi^2(2\xi)^{3/2}(2c_1-9c_2)$, $c_{\omega}=-6\pi^2(2\xi)^{3/2}(2c_1+3c_2)$)

Low Energy Theory

$$\chi(q) = \frac{-mk_F}{\hbar^2 \pi^2 \xi} \left[1 - \frac{c_\chi}{12\xi} \frac{q^2}{k_F^2} \right]$$

$$\chi(q) = \frac{-mk_F}{\hbar^2 \pi^2 \xi} \left[1 - \frac{c_\chi}{12\xi} \frac{q^2}{k_F^2} \right] \qquad \omega_q = q \underbrace{\frac{\hbar k_F \sqrt{\xi}}{m\sqrt{3}}}_{c_s} \left[1 + \frac{c_\omega}{24\xi} \frac{q^2}{k_F^2} \right]$$

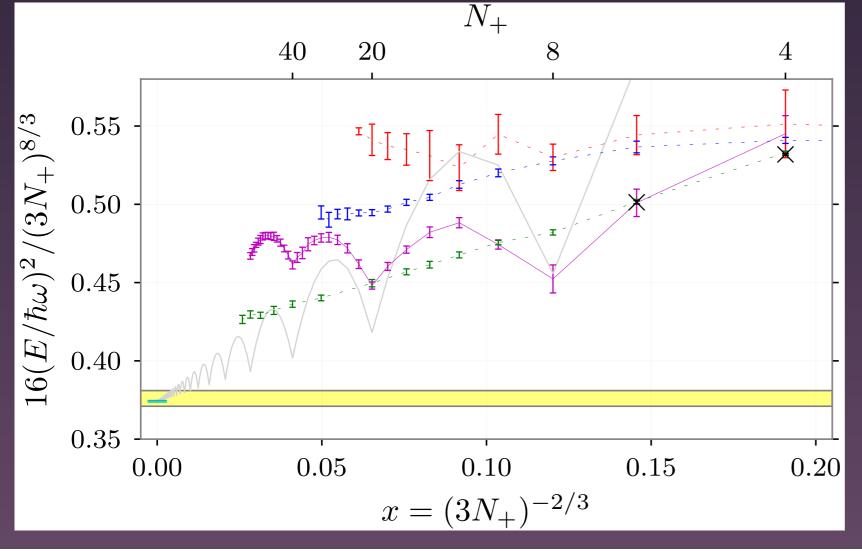
$$c_{\chi} = -6\pi^2 (2\xi)^{3/2} (2c_1 - 9c_2), \ c_{\omega} = -6\pi^2 (2\xi)^{3/2} (2c_1 + 3c_2)$$

- Leading order: one parameter $\xi=0.3742(5)$
- Two new universal constants at NLO:
 - Static: $c_{\chi}=1.5(3)$ (Forbes 2013: not a proper 1-sigma error)
 - (BdG $c_x=7/3=2.33$; ϵ -expansion $c_x=1.6+O(\epsilon^2)$; GPE $c_x=2.25$)
 - Dynamic: $c_{\omega}=?$
 - (BdG $c_{\omega}=0.7539$; ϵ -expansion $c_{\omega}=c_{\chi}+O(\epsilon^2)$; GPE $c_{\omega}=c_{\chi}$)

BdG Juan and Valle 2009; ϵ -expansion Rupak and Schäfer 2007

Harmonic Traps

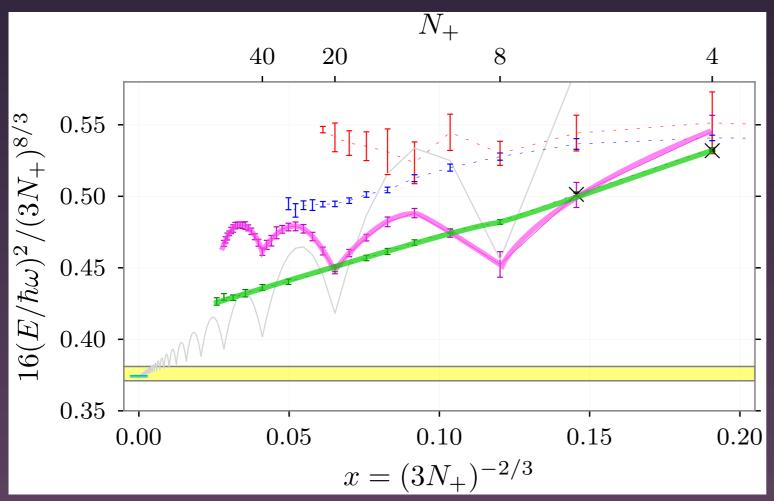
$$\begin{split} E(N_+) &= \frac{\sqrt{\xi}}{4}\hbar\omega \left[\overbrace{(3N_+)^{4/3}}^{\text{LDA}} - \frac{c_\chi}{6\xi} (3N_+)^{2/3} + O(N_+^{5/9}) \right], \\ \frac{16E^2}{\xi\hbar^2\omega^2(3N_+)^{8/3}} &= \frac{\xi + c_\chi x + O(x^{7/6}),}{\xi(3N_+)^{2/3}} \\ \frac{16E^2}{(3N_+)^{2/3}} &= \frac{\xi + c_\chi x + O(x^{7/6}),}{\xi(3N_+)^{2/3}} \end{split}$$



 Static structure factor describes slope

Forbes 2013

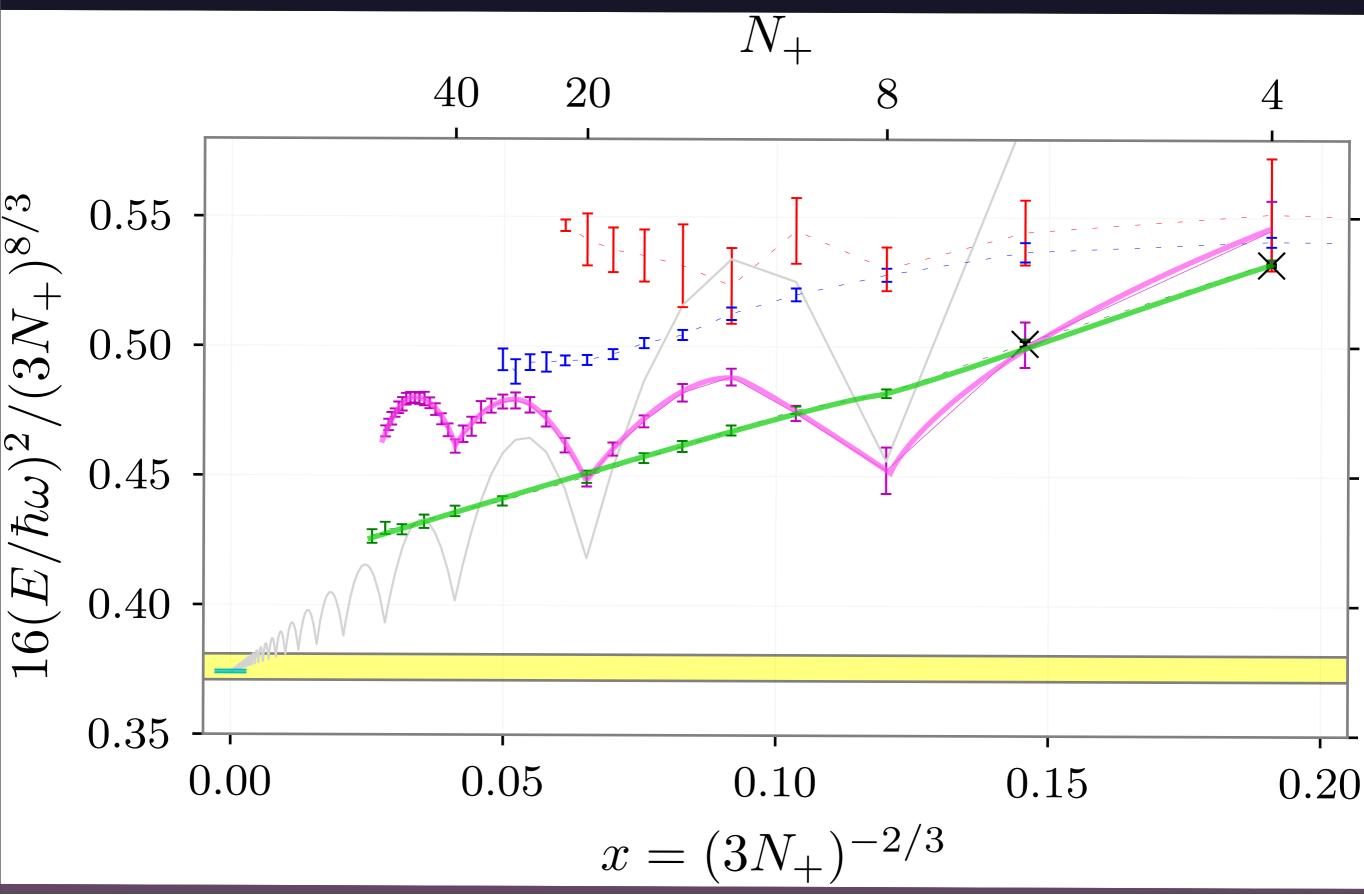
QMC Disagreements



Blume and Daily 2011; Endres, Kaplan, Lee, Nicholson 2011; Forbes, Gandalfi, Gezerlis 2012; Forbes 2013 Variational QMC bound (green) not consistent with QMC results

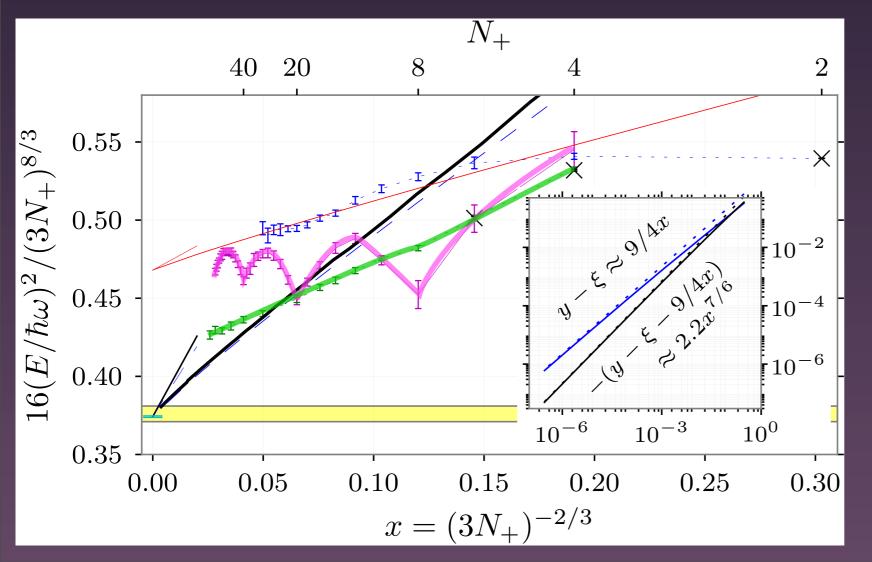
Still need resolution:

Are there shell effects?



Thermodynamic Limit

$$\begin{split} E(N_+) &= \frac{\sqrt{\xi}}{4}\hbar\omega \left[\overbrace{(3N_+)^{4/3}}^{\text{LDA}} - \frac{c_\chi}{6\xi} (3N_+)^{2/3} + O(N_+^{5/9}) \right], \\ \frac{16E^2}{\xi\hbar^2\omega^2(3N_+)^{8/3}} &= \frac{\xi + c_\chi x + O(x^{7/6}), \quad x = \frac{1}{(3N_+)^{2/3}} \end{split}$$

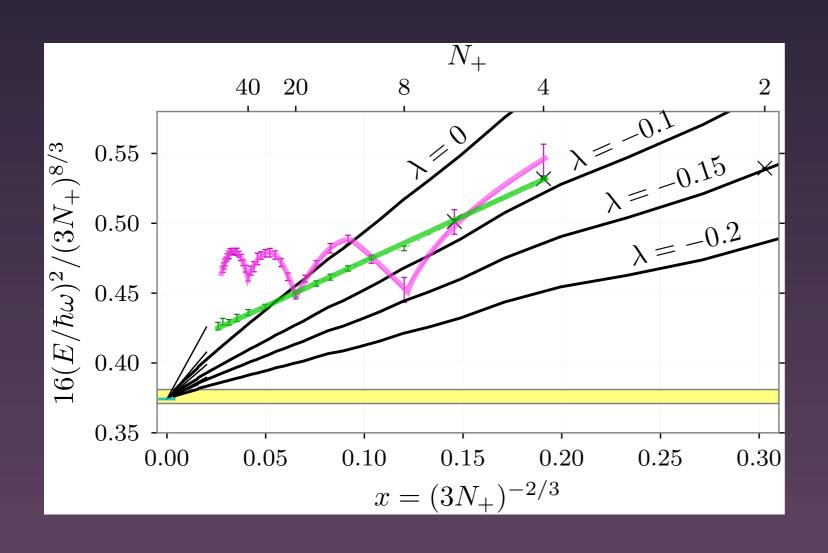


- Thermodynamic limit is far away!
- Hard to see
 asymptotic
 behaviour (N~108)
- Validity of LDA?

Forbes 2013

Gradient Corrections?

$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \left(\alpha \frac{\tau}{\mathbf{m}} + g \mathbf{v}^{\dagger} \mathbf{v}\right) + \beta \mathcal{E}_{FG}(\mathbf{n}) + \frac{\lambda}{8m} \frac{(\nabla \mathbf{n})^2}{\mathbf{n}}$$

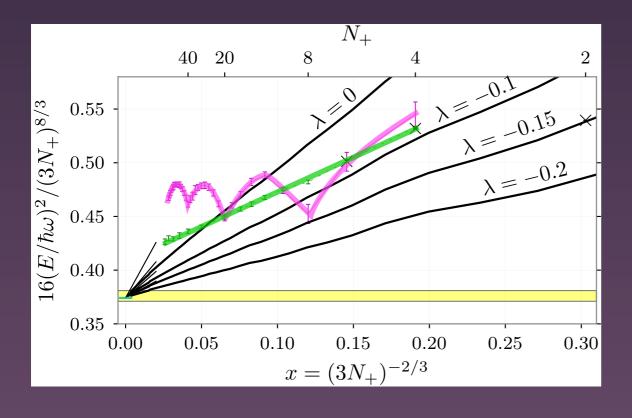


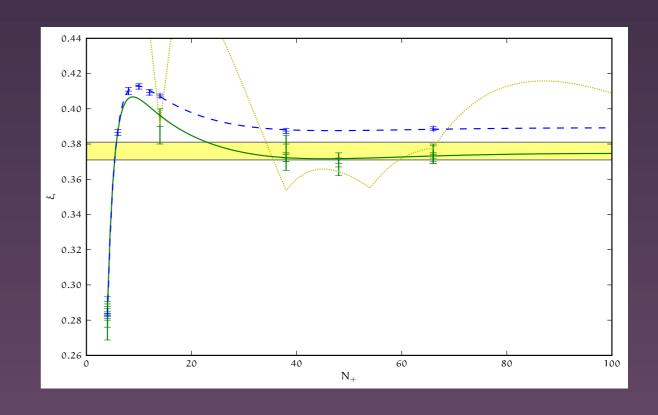
- Negative!
- $c_{\chi} = 1.5(3)$
- •Only Lo gradient affects c_{χ}
- Still a "small" effect (~10%)

SLDA Summary

$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \left(\alpha \frac{\tau}{\mathbf{m}} + g \mathbf{v}^{\dagger} \mathbf{v}\right) + \beta \mathcal{E}_{FG}(\mathbf{n}) + \frac{\lambda}{8m} \frac{(\nabla \mathbf{n})^2}{\mathbf{n}}$$

Works remarkably well

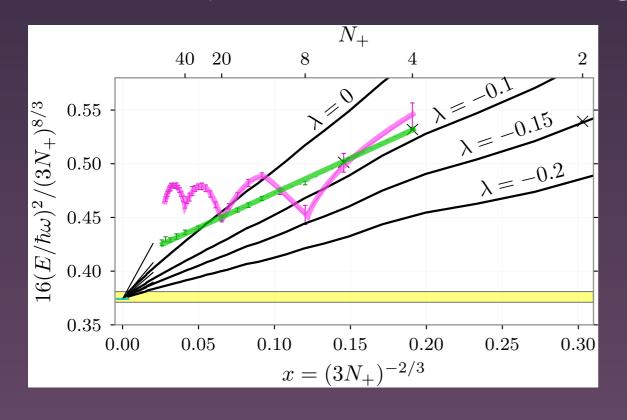


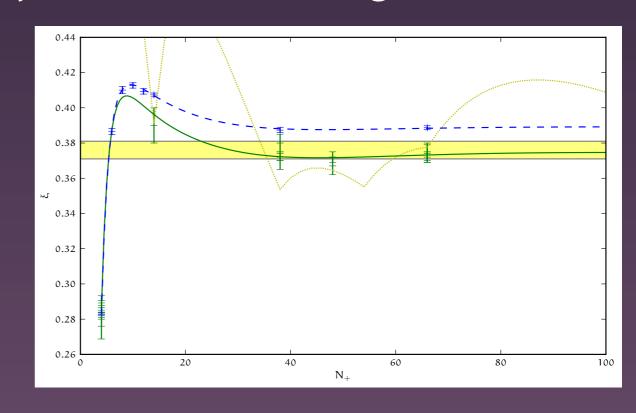


SLDA Summary

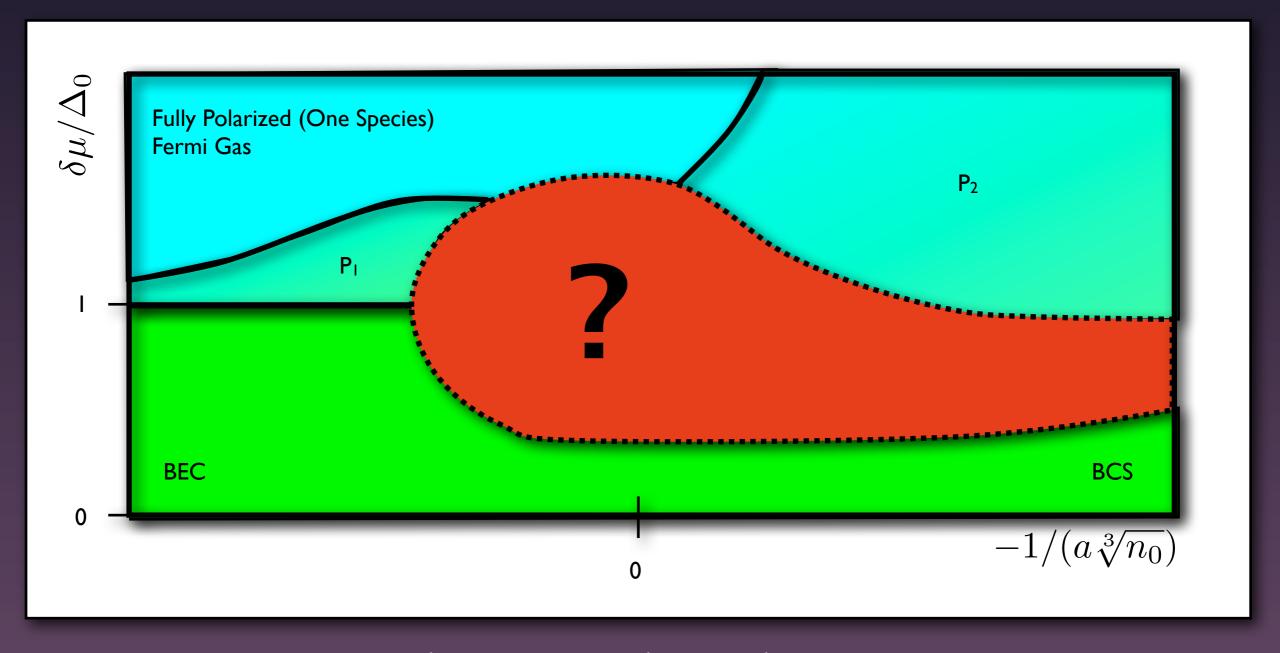
$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \left(\alpha \frac{\tau}{\mathbf{m}} + g \mathbf{v}^{\dagger} \mathbf{v}\right) + \beta \mathcal{E}_{FG}(\mathbf{n}) + \frac{\lambda}{8m} \frac{(\nabla \mathbf{n})^2}{\mathbf{n}}$$

Extrapolation: small to large systems (IR convergence)



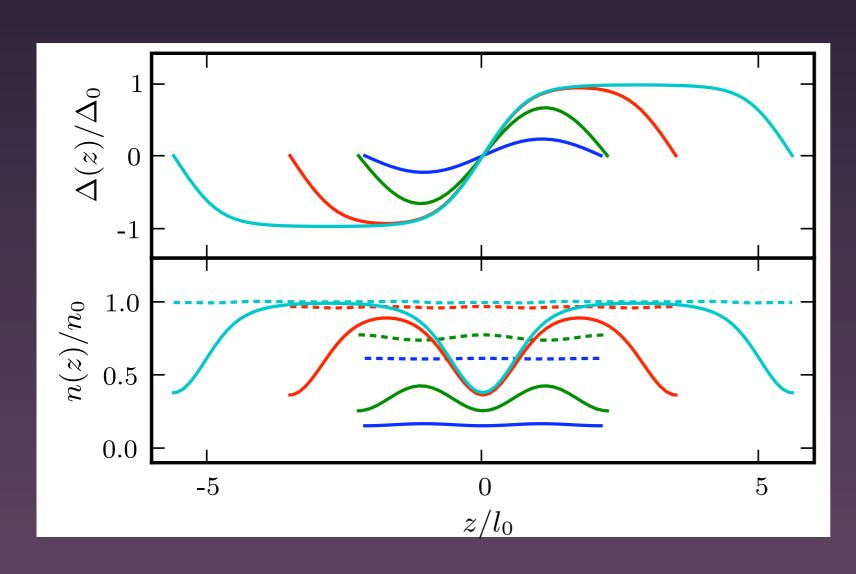


Phase Structure



Based on D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk PRL 97 020402 (2006)

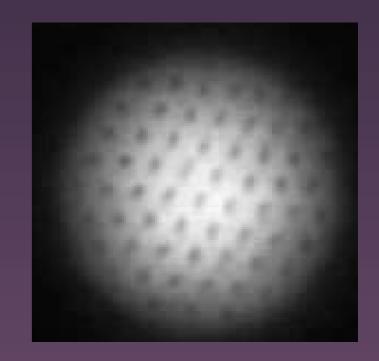
ASLDA DFT predicts (FF)LO at Unitarity: Supersolid!



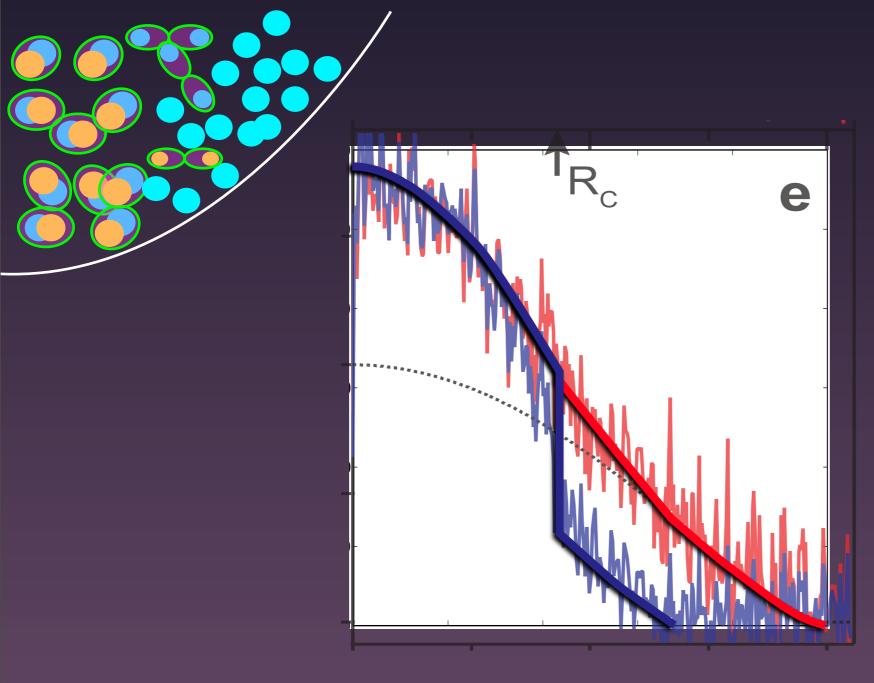
Bulgac and Forbes PRL 101 (2008) 215301

Large density contrast (factor of 2)

Similar to contrast of vortex core



Observations: Nothing?



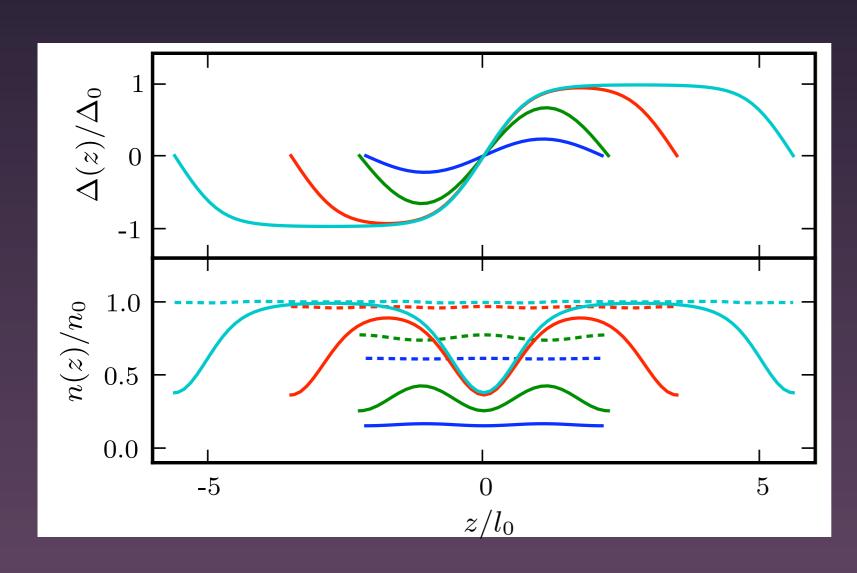
MIT Experimental data from Shin et. al (2008)

Paired core

Polarized wings

Maybe there are no interesting polarized superfluid phases?

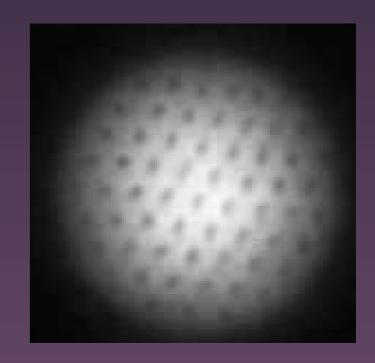
Dft predicts (ff)lo at Unitarity: Supersolid!



Bulgac and Forbes PRL 101 (2008) 215301

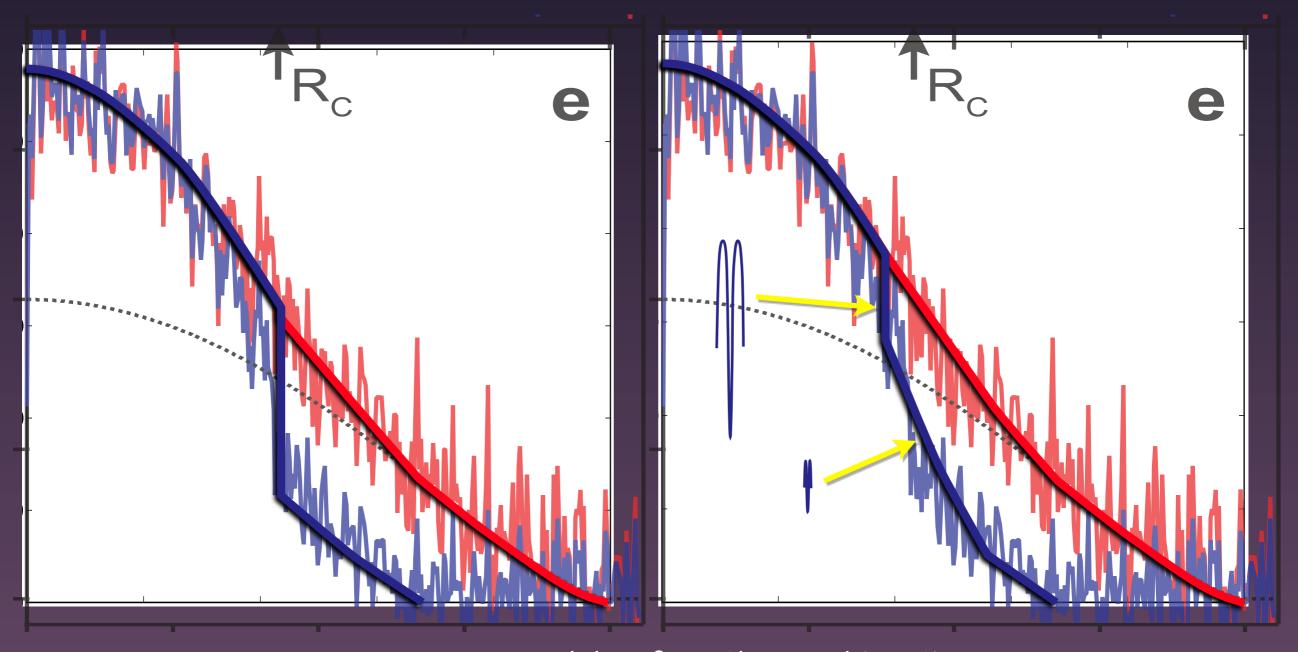
Large density contrast (factor of 2)

Similar to contrast of vortex core



Observations: Inconclusive

Need detailed structure or novel signature



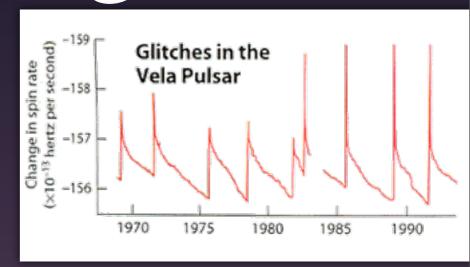
MIT Experimental data from Shin et. al (2008)

Why FFLO not seen?

- It is not there:
 - •Other homogenous phases might be better.
 - T might be too high (fluctuations kill 1D FFLO).
 - Trap frustrates formation (traps are not flat enough).
- It is not seen:
 - · Noise washes out signature.
 - Small physical volume for FFLO.
- · Need a nice flat trap: Large physical volume of FFLO

Application: Vortex Pinning

- Pulsar glitching (neutron stars)
 - Massive vortex unpinning events?
 Anderson and Itoh (1975)



Pulsar Astronomy by Andrew G. Lyne and Francis

- Large scale events (thousands of vortices)
 - Too big for DFT use GPE
- Need Vortex-Defect interactions (force)
 - Use DFT to calculate and then fit GPE

TDDFT (TDSLDA)

$$\label{eq:potential} \begin{split} \iota \partial_t \Psi_n = H[\Psi] \Psi_n = \begin{pmatrix} \frac{-\alpha \nabla^2}{2m} - \mu + U & \Delta^\dagger \\ \Delta & \frac{\alpha \nabla^2}{2m} + \mu - U \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix} \end{split}$$

- Need to evolve each hundreds of thousands of wavefunctions
- Possible for moderate systems (nuclei) using supercomputers, resonances, induced fission etc.
- Probably not for glitching dynamics

GPE model for UFG

$$E[\Psi] = \int d^3\vec{x} \, \left(\frac{|\nabla \Psi(\vec{x})|^2}{4m_F} + V_F(\vec{x})\rho_F + \xi \mathcal{E}(\rho_F) \right)$$

$$i\partial_t \Psi = \left(-\frac{\nabla^2}{4m_F} + 2[V_F + \xi \varepsilon(\rho_F)]\right) \Psi$$

- Think:
 - Boson = Fermion pair (dimer)
- Galilean Covariant (fixes mass)
- Match Unitary Equation of State

$$\begin{split} \rho_F &= 2|\Psi|^2 \\ \mathcal{E}_{FG} &\propto \rho_F^{5/2} \\ \varepsilon_F &= \mathcal{E}_{FG}'(\rho_F) \propto \rho_F^{3/2} \end{split}$$

GPE model = Extended Thomas Fermi (ETF)

$$E[\Psi] = \int d^3\vec{x} \; \left(\frac{|\nabla\sqrt{\rho_F}|^2}{8m_F} + V_F(\vec{x})\rho_F + \xi \mathcal{E}_{FG}(\rho_F) + \frac{4\lambda - 1}{8m_F} (\nabla\sqrt{\rho_F})^2 \right)$$

- In the absence of currents (i.e. no vortices), kinetic and Weizsäcker terms behave the same Vortices etc. appear as kinks in $\sqrt{\rho_F}$
- See Salasnich for a discussion

GPE model = Extended Thomas Fermi (ETF)

$$E[\Psi] = \int d^3\vec{x} \, \left(\frac{|\nabla\sqrt{\rho_F}|^2}{8m_F} + V_F(\vec{x})\rho_F + \xi \mathcal{E}_{FG}(\rho_F) + \frac{4\lambda}{8r_{cF}} (\nabla\sqrt{\rho_F})^2 \right)$$

- Weizsäcker term "breaks" vortices
- (Also does not match experiment)

GPE model for UFG

$$E[\Psi] = \int d^3\vec{x} \left(\frac{|\nabla \Psi(\vec{x})|^2}{4m_F} + V_F(\vec{x})\rho_F + \xi \mathcal{E}(\rho_F) \right)$$

$$i\partial_t \Psi = \left(-\frac{\nabla^2}{4m_F} + 2[V_F + \xi \varepsilon(\rho_F)]\right) \Psi$$

- Dynamics are much easier than SLDA
 - Only one wavefunction to evolve
- Contains superfluid hydrodynamic equations
- Match to low-energy physics

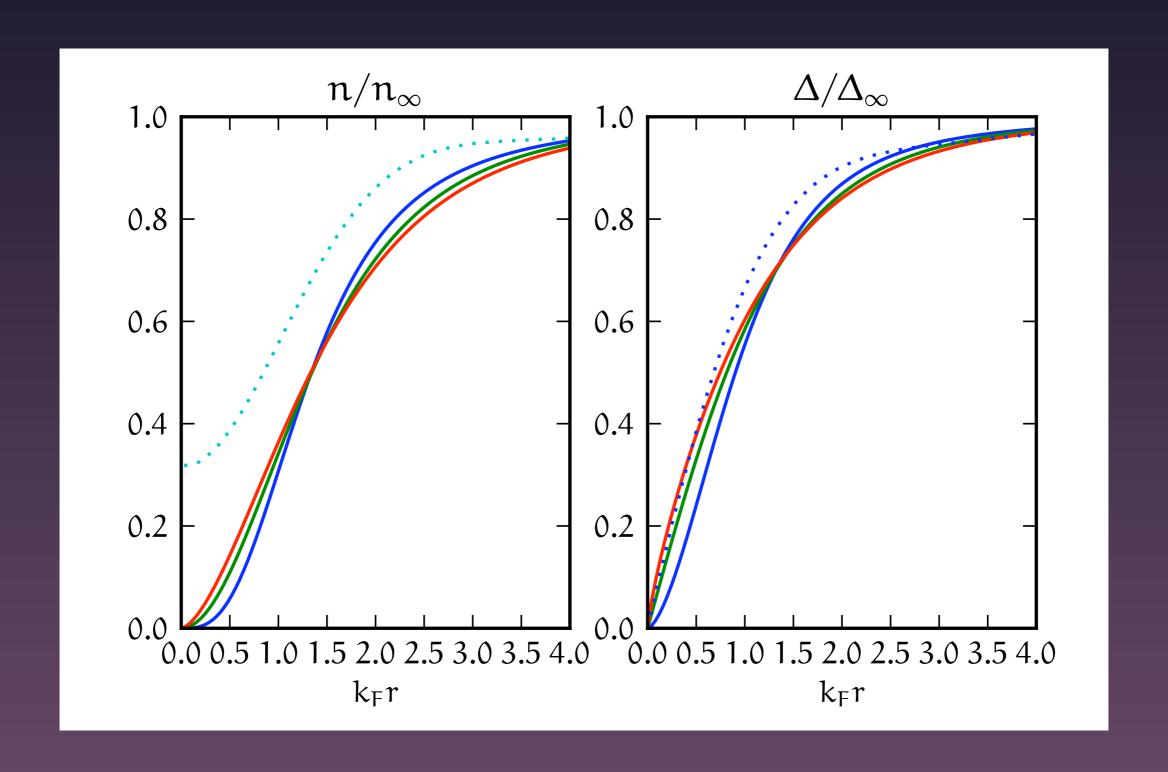
Matching Theories: The Good

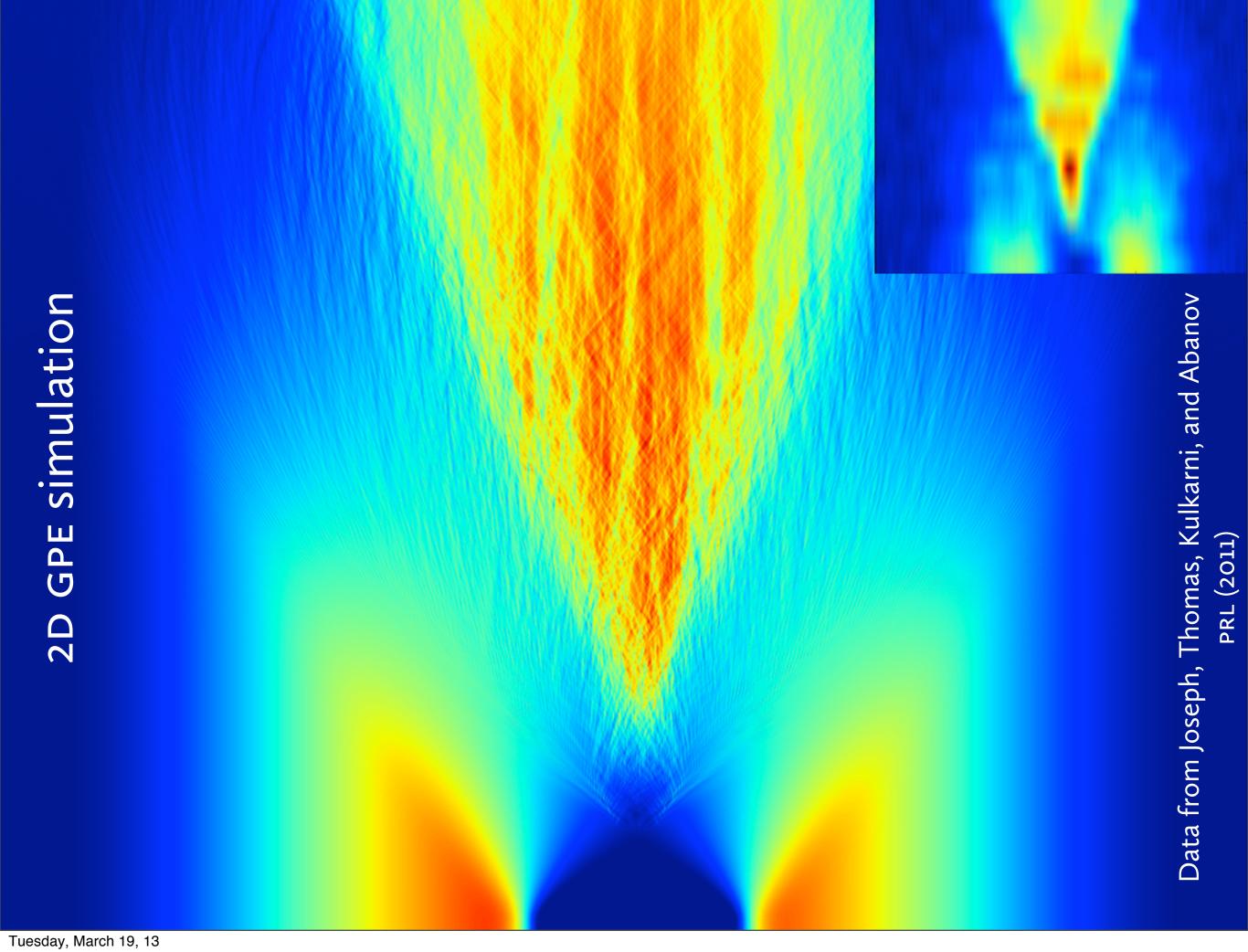
- Galilean Covariance (fixes mass/density relationship)
- Equation of State
- Hydrodynamics
 - speed of sound (exact)
 - phonon dispersion (to order q³)
 - static response (to order q²)

Matching Theories: The Bad

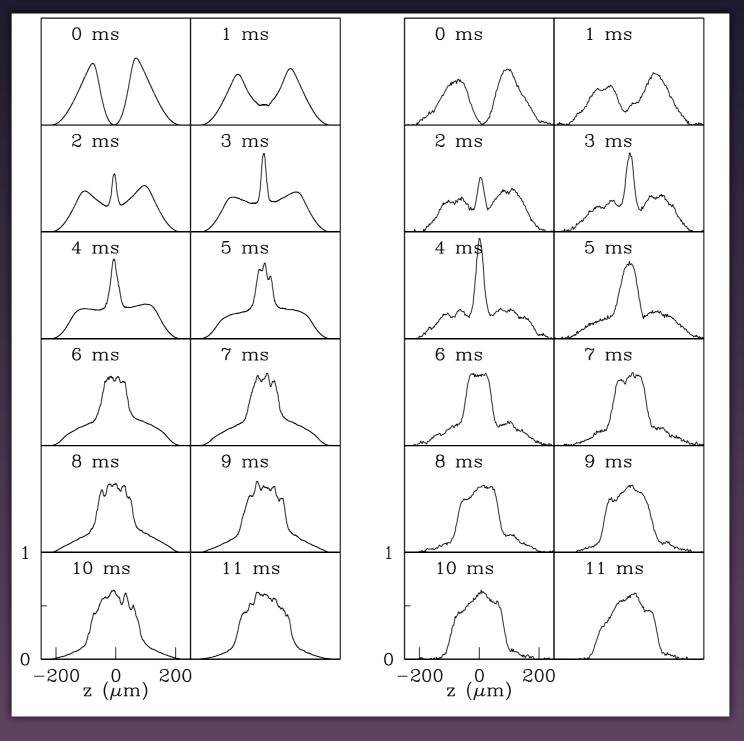
- GPE has $\rho=2|\Psi|^2$
 - Density vanishes in core of vortex
 - Implies $\int |\Psi|^2$ conserved
 - (Approximate conservation $\int |\Psi|^2$ in Fermi simulations provides measure of applicability)
- No "normal state"
 - Two fluid model needed?
 - Coarse graining (transfer to "normal" component)

Vortex Structure



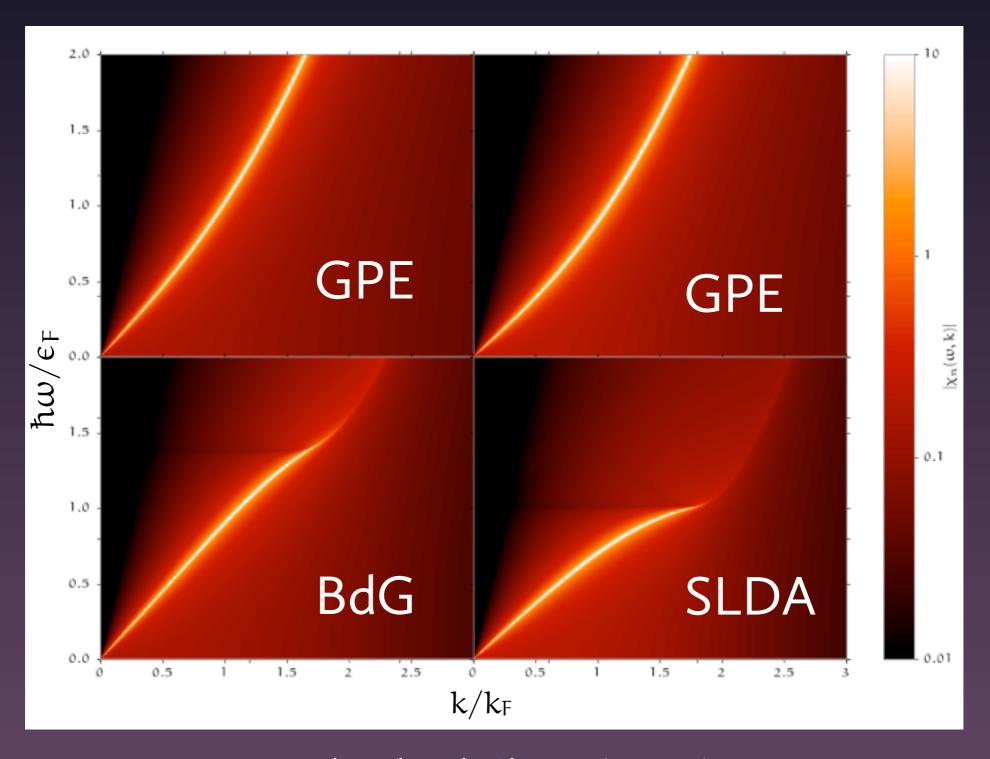


GPE vs. Experiment



Ancilotto, L. Salasnich, and F. Toigo (2012)

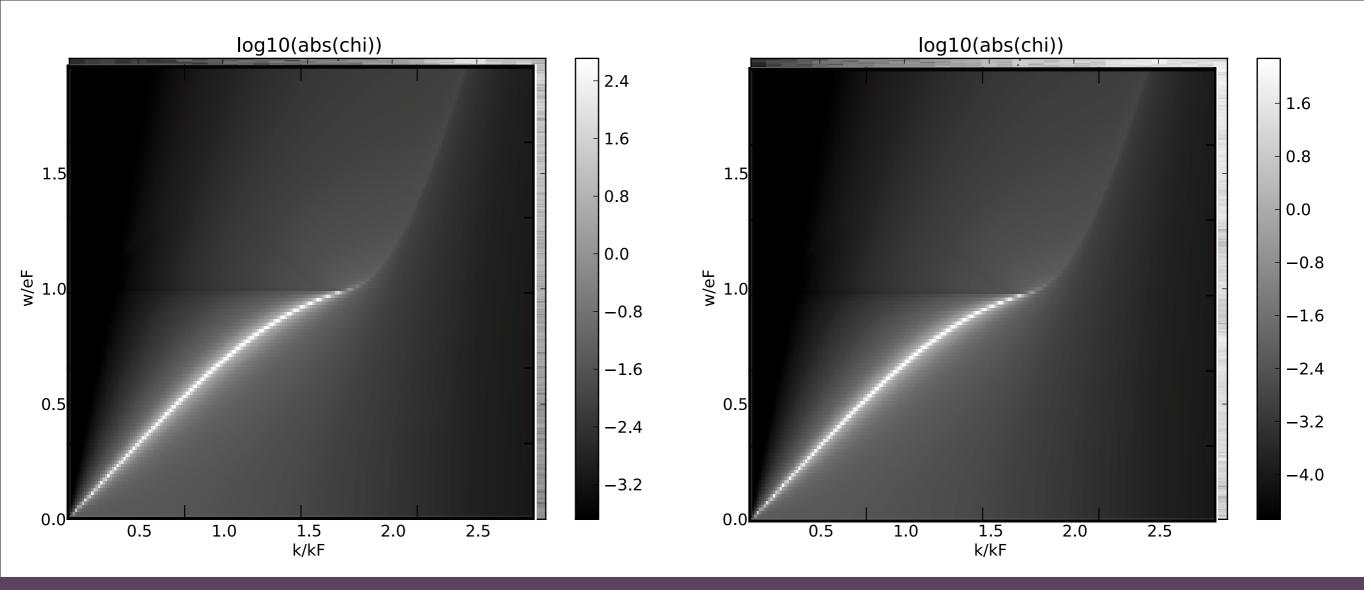
Linear Response



Work with Rishi Sharma (TRIUMF)

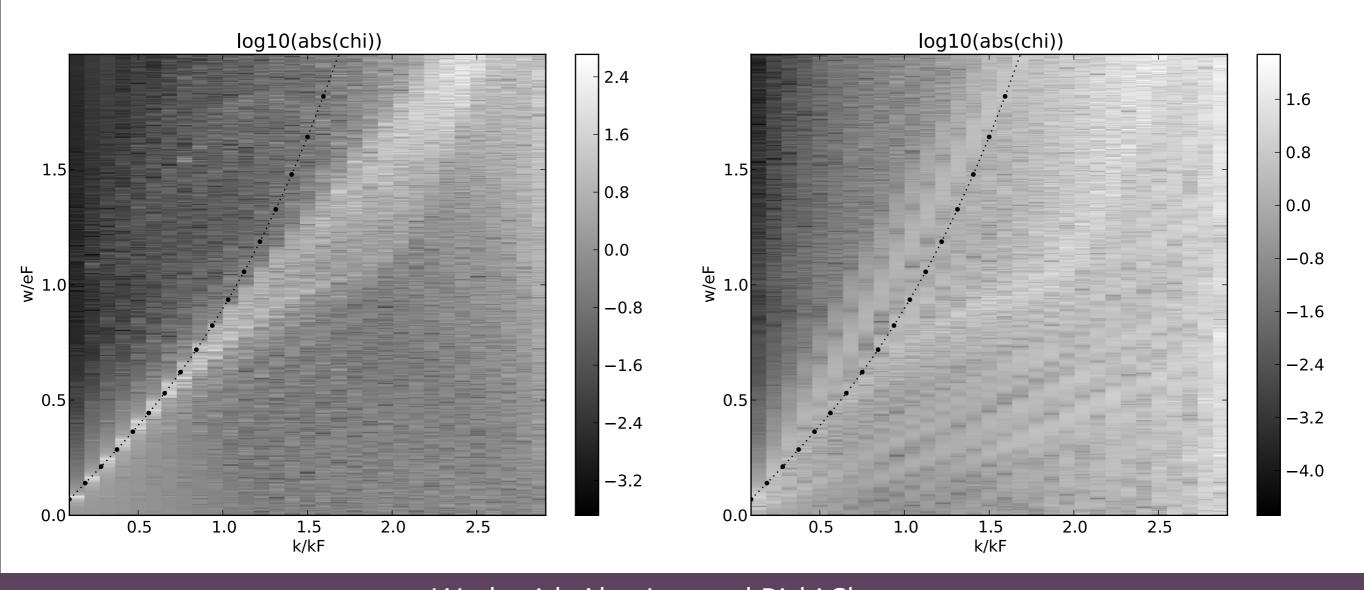
V=0.05

V=0.5



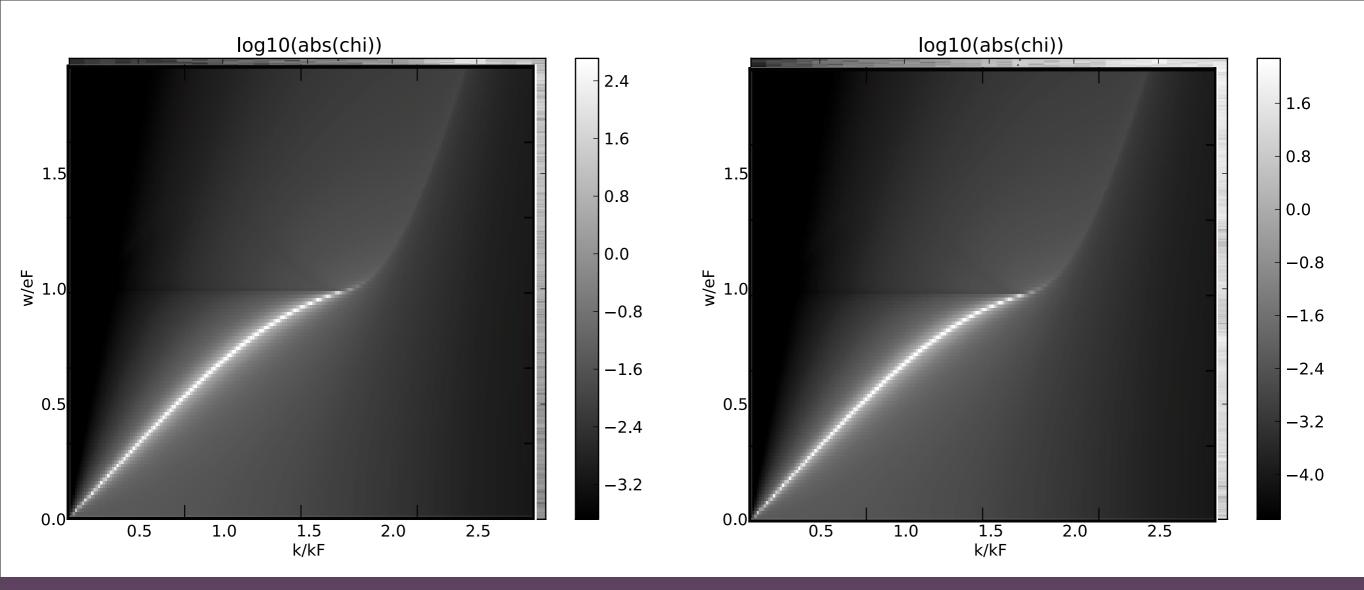
V=0.05

V=0.5



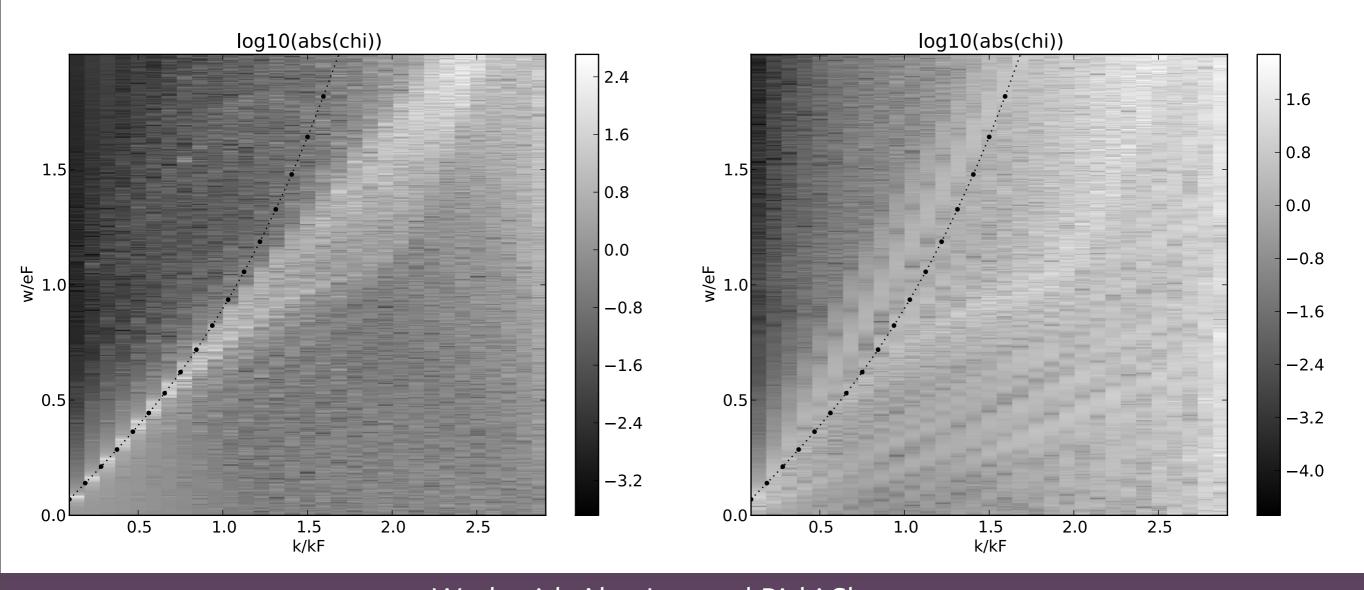
V=0.05

V=0.5



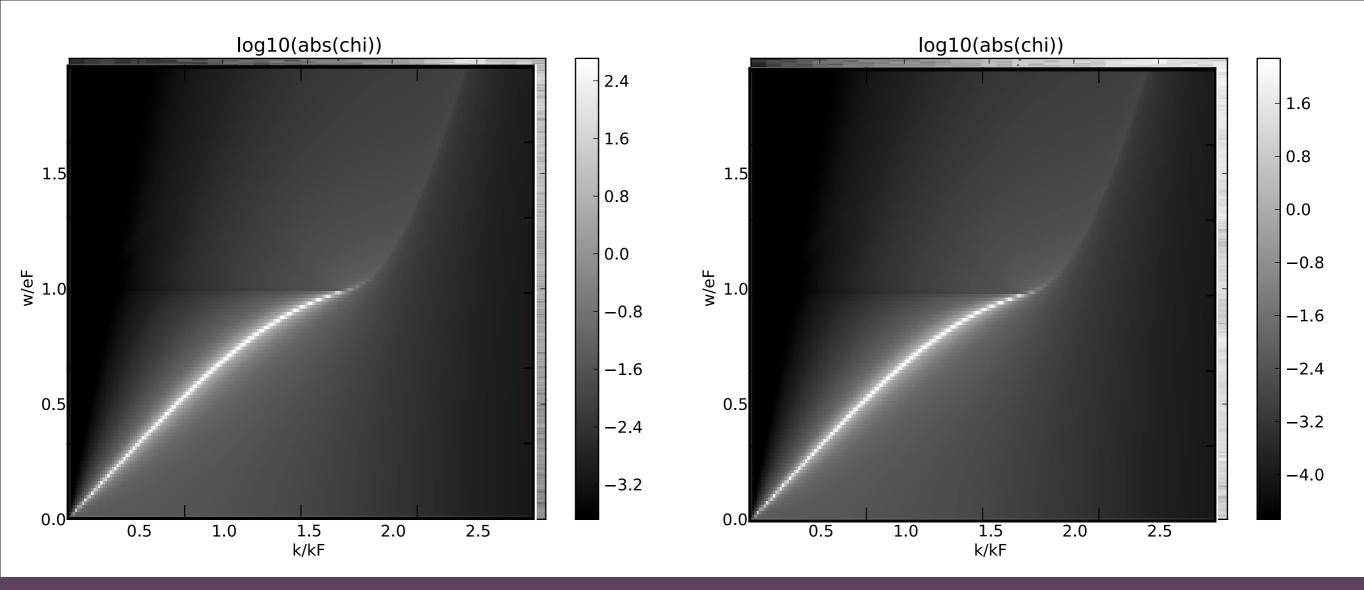
V=0.05

V=0.5



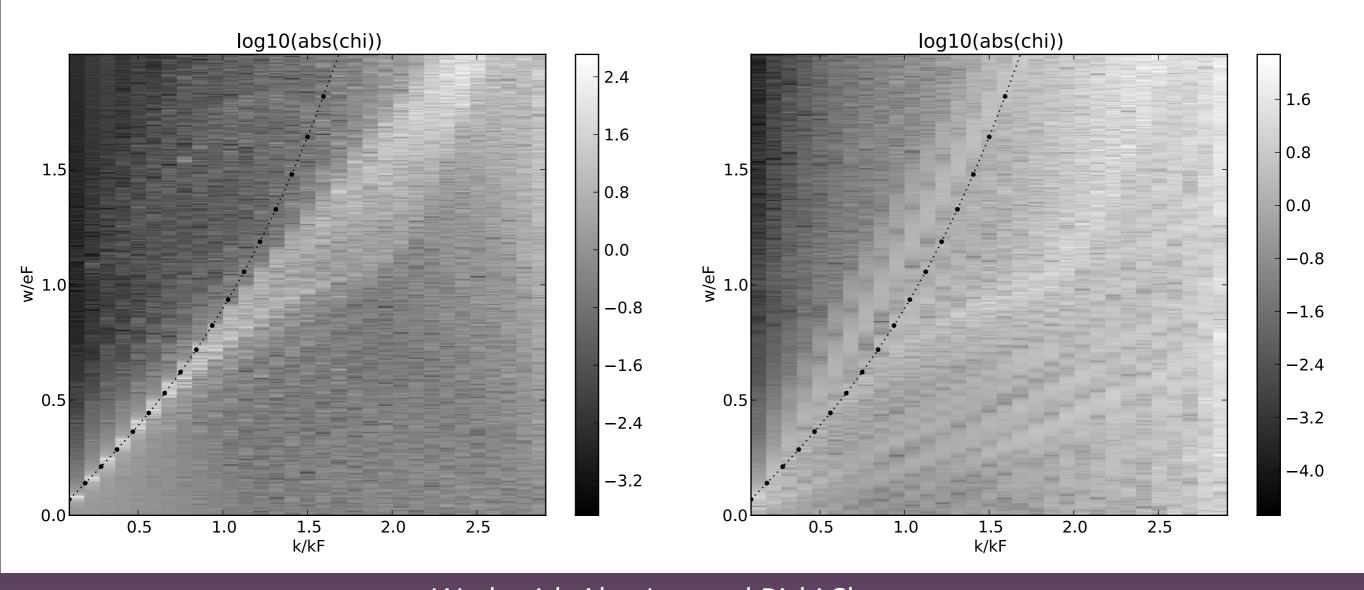
V=0.05

V=0.5



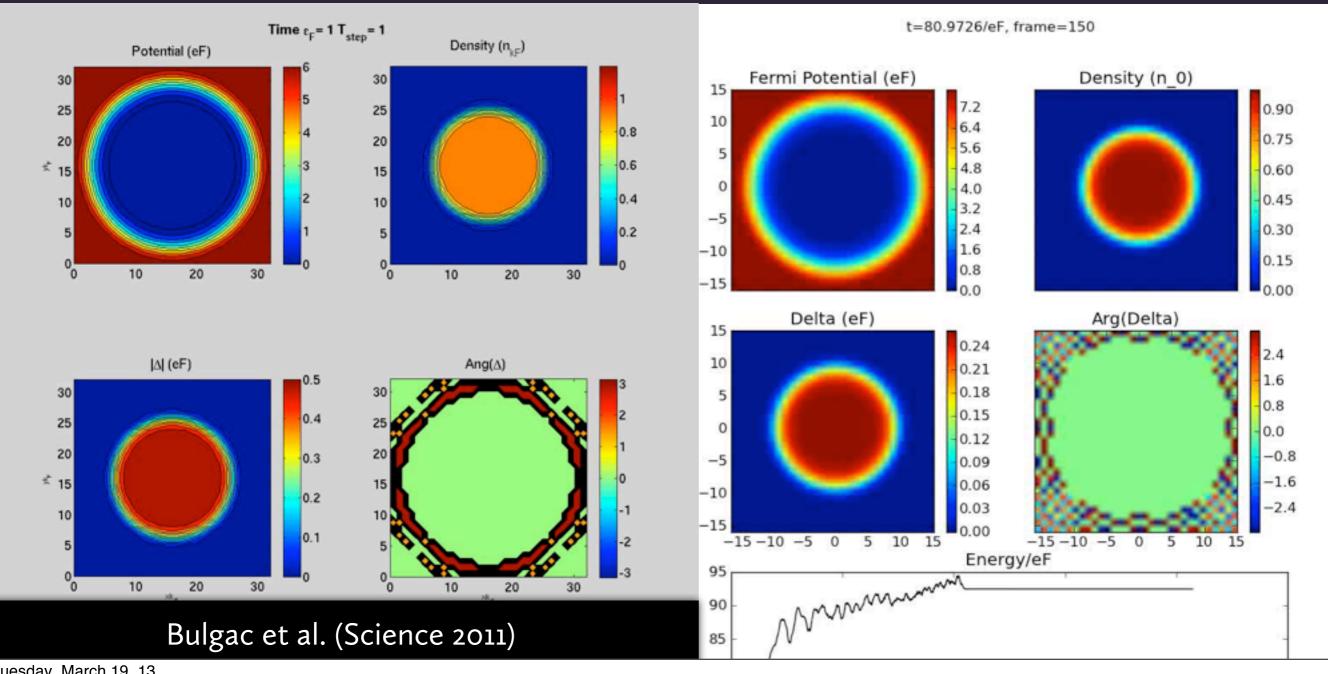
V=0.05

V=0.5

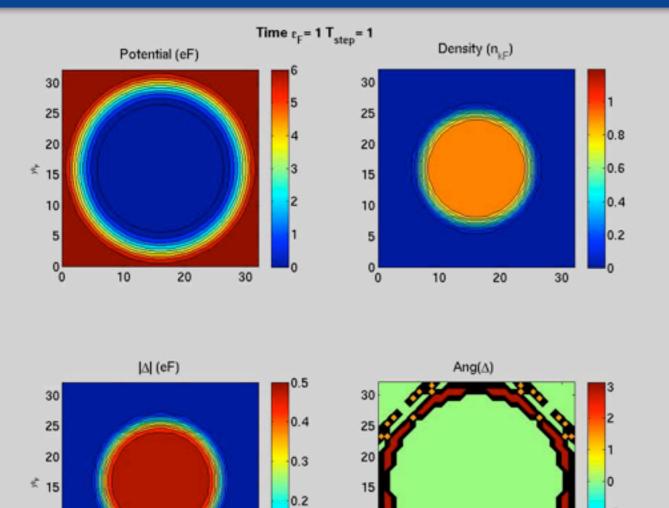


Comparison

Fermions SLDA TDDFT Gross Pitaevskii model



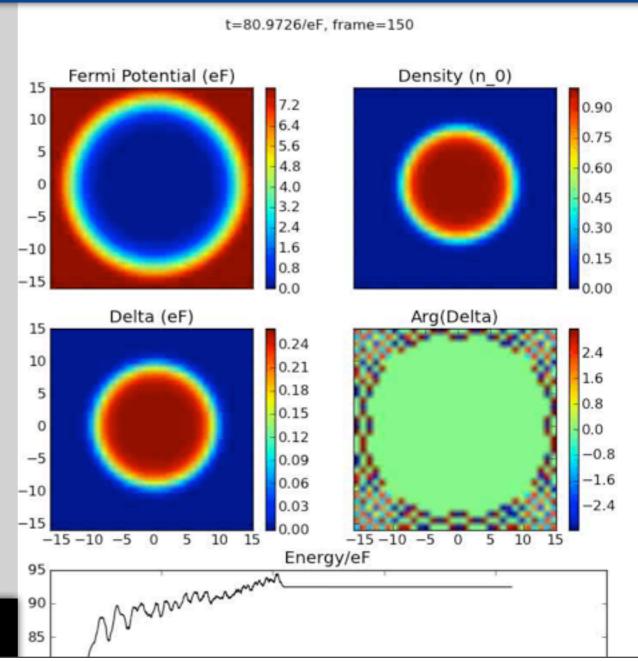
- Fermions:
- Simulation hard!
- Evolve 10⁴–10⁶ wavefunctions
- Requires supercomputers



Bulgac et al. (Science 2011)

·GPE:

- Simulation much easier!
- Evolve 1 wavefunction
- Use supercomputers to study large volumes



10

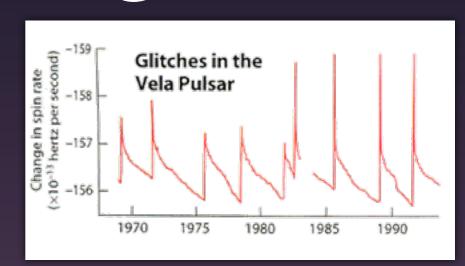
GPE Simulations of Unitary Fermi Gas

"A Laboratory on your Laptop"

Application: Vortex Pinning

- Pulsar glitching (neutron stars)
 - Massive vortex unpinning events?

 Anderson and Itoh (1975)

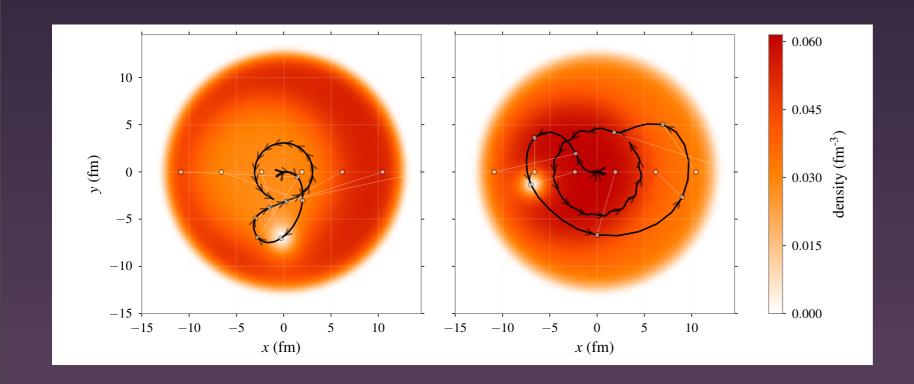


Pulsar Astronomy by Andrew G. Lyne and Francis

- Large scale events (thousands of vortices)
 - Too big for DFT use GPE
- Need Vortex-Defect interactions (force)
 - Use DFT to calculate and then fit GPE

Pinning Force

$$\frac{\mathsf{dE}}{\mathsf{dt}} = -\vec{\mathbf{v}} \cdot \vec{\mathbf{F}}$$



Thermodynamics

- Well defined: (unlike vortex mass)
- Accessible from dynamic simulations
- Extract from stirring simulations

Bulgac, Forbes, Sharma 2013

Applications

- Fast qualitatively accurate simulation:
 - Design initial conditions and V(t) for experiment and expensive fermion DFT calculations
 - Develop intuition for quantum hydrodynamics
- Framework to attack large-scale simulations
 - Neutron star glitches (vortex depinning?)
 - Multi-scale simulations

Future Work

- Deal with pair-breaking
 - Two fluid model: transfer energy and mass to a normal component
 - Stochastic extensions?
- More flexible model
 - How to get past Galilean invariance?
- Multiscale model matching
 - Is GPE enough?
 - database of vortex/vortex interactions?
 - spawn small fermionic solvers to deal with collisions?

Conclusion

- •SLDA DFT: Excellent agreement with expt. and QMC
 - Tool for extrapolating from small to large (Generalize to aid with IR convergence?)
- GPE models works quite well for low energy dynamics
 - Quantitative agreement at unitarity (Can their domain of validity be expanded?)
- "A Laboratory on your Laptop"
 - A feasible solution for bulk superfluid dynamics?
 - Neutron star glitches?