Hard Probes at LHC (CMS)

Gunther Roland (MIT)

for the CMS Collaboration

EMMI Workshop

"Prospects and Challenges for Future Experiments in Heavy Ion Collisions" GSI Feb 15-16, 2013

Hard Probes at LHC (CMS)

Gunther Roland (MIT)

for the CMS Collaboration

"Prospects and Challenges for Future Experiments in Heavy Ion Collisions"

GSI Feb 15-16, 2013

LHC timeline

- Phase 0: 2010-2012
 - PbPb @ 2.76TeV: 160/μb
 - pPb @5TeV: 30/nb
 - pp @ 2.76 TeV: 5/pb
- Phase 1: 2014-2018 (up to LS2)
 - PbPb @ 5.5 TeV: 1.5/nb
 - pPb and pp @ 5.5 TeV equivalent statistics (50/pb pp)
 - smaller nucleus
- Phase 2: 2020- (LS2 and beyond)
 - PbPb @ 5.5 TeV: increase total L_{int} to 10/nb
 - additional nuclei
 - pp equivalent statistics (500/pb)

CMS Detector

Hard Probes in CMS

Hard Probes in CMS

Hard Probes in CMS

Dimuon resolution essentially identical in pp and PbPb

Moderate to small degradation of jet performance in PbPb

CMS detector performance for hard probes: PbPb ≈ pp + minor perturbation

Hard Probes

(Non-) Suppression of colorless probes

 $p_{T}(m_{T})$ (GeV) N_{coll} scaling confirmed

Suppression of inclusive jets

Suppression of inclusive jets

Fully unfolded inclusive jet R_{AA} pp 2.76 TeV reference

B-tagging in PbPb

Study quark mass dependence of energy loss

6.5 < p_T < 30 GeV: Displaced J/ ψ → $\mu\mu$

Obtain BR_{AA}

p_T > 80GeV: Jet + high mass secondary vertex

Obtain b-jet fraction

CMS-PAS HIN-12-003 CMS preliminary . dt = 150 μb⁻¹ 0.05 PbPb Data Pythia+Hydjet Syst. uncertainty 0.04 b-jet fraction 0.03 0.02 $80 < \text{Jet p}_{\tau} < 100 \text{ GeV/c}$ 0.01 50-100% 0-20% 20-50% 100 150 200 250 300 350 400 N_{part}

Jet Suppression Mass Dependence

Subleading jet ($p_T > 30 \text{GeV/c}$)

Jet anatomy

Fragmentation function difference (PbPb - pp): Shows redistribution of particles in p_T

Jet shape ratio (PbPb/pp): Shows redistribution of energy in r from jet axis

Jet anatomy

Fragmentation function difference (PbPb – pp): Shows redistribution of particles in p_T

Jet shape ratio (PbPb/pp): Shows redistribution of energy in r from jet axis

0.3

0.2

radius (r)

0.1

γ+jet: u,d quark energy loss

Photon tag:

- Identifies jet as u,d quark jet
- Provides initial quark direction
- Provides initial quark p_T

γ+jet: u,d quark energy loss

PLB 718 (2013) 773

Photon-jet momentum balance

 N_{part}

Di-muon invariant mass

Sequential Upsilon suppression

2010 data

Indication of suppression of (Y(2S)+Y(3S)) relative to $Y(1S) \rightarrow 2.4\sigma$ significance

2011 data

Observation of sequential suppression of Y family → Detailed studies

Building a quarkonium-thermometer

Clear hierarchy in R_{AA} of different quarkonium states

Expected in terms of binding energy

CMS-PAS HIN-12-014, HIN-12-007

Challenges and prospects

- Phase 0: 2010-2012
 - PbPb @ 2.76TeV: 160/μb
 - pPb @5TeV: 30/nb
 - pp @ 2.76 TeV: 5/pb
- Phase 1: 2014-2018 (up to LS2)
 - PbPb @ 5.5 TeV: 1.5/nb
 - pPb and pp @ 5.5 TeV equivalent statistics (50/pb pp)
 - smaller nucleus
- Phase 2: 2020- (LS2 and beyond)
 - PbPb @ 5.5 TeV: increase total L_{int} to 10/nb
 - additional nuclei
 - pp equivalent statistics (500/pp)

Now: What's the matter in pPb?

Now: What's the matter in pPb?

expect answers before summer...

After LS1: Precision + Accuracy

- For now, "Golden channels" suffer from limited statistics
 - γ +jet, Z^0 +jet, Y(nS) vs N_{part}
- Expect further increase in luminosity
 - Machine predictions have been very conservative
- Key issue in CMS: Selectivity of L1 trigger
 - PbPb input rate for high level trigger limited to < 3kHz
 - E.g. 50kHz PbPb requires 95% rejection at L1
 - Current configuration limited to 50% for jet triggers
 - requires background subtraction at L1
- L1 upgrade proposal approved by CMS
 - (Moderate) funding request for 2013-15 (HEP+NP)

LS2 and beyond: New Frontiers

- CMS upgrade for HL-LHC
 - Trigger/DAQ ready for highest conceivable PbPb rates
 - Major upgrades for silicon tracker, calorimeters, trigger
- 10/nb PbPb corresponds to several 100/pb pp

Multi-jet ratios!

Statistics to pursue sophisticated QCD measurements

Full arsenal of pp heavy-flavor analyses (b-physics, top)

Summary

- CMS has delivered a wide range of results for hard probes in HI collisions at the energy frontier
- Selective trigger is key component
 - L1 upgrade
- Strong physics program for x10 and x100 increase in integrated luminosity (2014-2018 and 2020-)
 - From "First observation" to "Precision measurement"
 - photon-jet, Z⁰-jet, sequential quarkonium suppression,....
 - Beyond "single particles"
 - Correlations of rare probes with bulk properties (system size, flow)
 - Differential multi-object measurements
 - Use full arsenal of pp observables/analysis techniques
 - Particle flow, missing p_T, b-tagging, life-time fits, top quark ID,...

