HEAVY ION COLLISIONS

AND

QUANTUM FIELDS IN AND OUT EQUILIBRIUM

EMMI Workshop on

"Prospects and Challenges for Future Experiments in Heavy Ion Collisions" GSI, Darmstadt February 15, 2013

European Research Council

Jean-Paul Blaízot, IPhT-Saclay

OUTLINE

Issues Thermodynamics Hydrodynamics Thermalization Jets and turbulent flow Summary

ISSUES

- Initial motivation (QCD asymptotic freedom, quark-gluon plasma, deconfinement transition, restoration of chiral symmetry, etc)

- Matter in equilibrium is described by QFT (at finite temperature and density)
- Wave functions of nuclei at high energy are given by QF d.o.f. (partons, color glass fields, etc)
- Many non equilibrium phenomena in HIC (thermalization, fluctuations, jets, etc)
- Theoretical tools (pert. theory, lattice, 'analytic' non perturbative methods, AdS/CFT, etc)

ISSUES

- Initial motivation (QCD asymptotic freedom, quark-gluon plasma, deconfinement transition, restoration of chiral symmetry, etc)

- Matter in equilibrium is described by QFT (at finite temperature and density)
- Wave functions of nuclei at high energy are given by QF d.o.f. (partons, color glass fields, etc)
- Many non equilibrium phenomena in HIC (thermalization, fluctuations, jets, etc)
- Theoretical tools (pert. theory, lattice, 'analytic' non perturbative methods, AdS/CFT, etc)

Note: QCD is important mainly in early stages of high energy collisions

THERMODYNAMICS

THERMODYNAMICS

- Lattice QCD, 'tool of choice' (for non zero T, and zero density)
 Phase diagram, with many control parameters (T, mu's, mq's, Nf, Nc, ..., B, etc)
- Temperature-density phase diagram not fully understood (critical end point ?)
- High temperature phase is well understood (T>3Tc) in terms of weak coupling expansions (weakly coupled massive quasiparticles).
- Vicinity of Tc : some understanding in terms of Euclidean concepts (*Polyakov loop, etc*). Physical d.o.f.?
- Beyond perturbation theory with non perturbative RG, DSE. Also progress in 'IR QCD' (*Landau gauge*).

THERMODYNAMICS

- Lattice QCD, 'tool of choice' (for non zero T, and zero density)
 Phase diagram, with many control parameters (T, mu's, mq's, Nf, Nc, ..., B, etc)
- Temperature-density phase diagram not fully understood (critical end point ?)
- High temperature phase is well understood (T>3Tc) in terms of weak coupling expansions (weakly coupled massive quasiparticles).
- Vicinity of Tc : some understanding in terms of Euclidean concepts (*Polyakov loop, etc*). Physical d.o.f.?
- Beyond perturbation theory with non perturbative RG, DSE. Also progress in 'IR QCD' (*Landau gauge*).

Note: activity with its own 'dynamics'. Contact with HIC ?

 $\partial_{\mu}T^{\mu\nu} = 0 \qquad \partial_{\mu}j^{\mu} = 0$

$\partial_{\mu}T^{\mu\nu} = 0 \qquad \partial_{\mu}j^{\mu} = 0$

- Viscous hydro is under control and works well (uncertainties: initial conditions, 2d/3d, longitudinal PdV work ?)

- Rich flow pattern, sensitivity to initial conditions
- Sensitivity to the equation of state? (Pt, (I/S)dN/dy)

$\partial_{\mu}T^{\mu\nu} = 0 \qquad \partial_{\mu}j^{\mu} = 0$

- Viscous hydro is under control and works well (uncertainties: initial conditions, 2d/3d, longitudinal PdV work ?)

- Rich flow pattern, sensitivity to initial conditions
- Sensitivity to the equation of state? (Pt, (1/S)dN/dy)

Viscosity puzzle: - small ratio of viscosity to entropy density, and early thermalization, suggest strong coupling - naturally explained by AdS/CFT

- but the QCD coupling is not (cannot be) infinite !

$\partial_{\mu}T^{\mu\nu} = 0 \qquad \partial_{\mu}j^{\mu} = 0$

- Viscous hydro is under control and works well (uncertainties: initial conditions, 2d/3d, longitudinal PdV work ?)

- Rich flow pattern, sensitivity to initial conditions
- Sensitivity to the equation of state? (Pt, (1/S)dN/dy)

Viscosity puzzle: - small ratio of viscosity to entropy density, and early thermalization, suggest strong coupling - naturally explained by AdS/CFT

- but the QCD coupling is not (cannot be) infinite !

Plasma: soft and hard modes, particles and fields. Long wavelength modes can remain strongly coupled....

THERMALIZATION

How do we go from the intial nuclear wave-functions to the locally equilibrated fluid seen in experiments ?
What are the initial d.o.f.'s : partons ? color fields (CGC)? mixture of both ?

- Initial fields are typically unstable (e.g. if anisotric momentum distributions of particles). Instabilities provide 'fast' isotropization of momentum distributions

- Amplification of soft modes is a generic feature

- CGC picture suggests an overpopulation of soft modes

The overpopulated plasma

Initial conditions $(t_0 \sim 1/Q_s)$

$$\epsilon_0 = \epsilon(\tau = Q_s^{-1}) \sim \frac{Q_s^4}{\alpha_s} \qquad n_0 = n(\tau = Q_s^{-1}) \sim \frac{Q_s^3}{\alpha_s} \qquad \epsilon_0/n_0 \sim Q_s$$

overpopulation parameter $n_0 \epsilon_0^-$

$$n_0 \ \epsilon_0^{-3/4} \sim 1/\alpha_{\rm s}^{1/4}$$

In equilibrated quark-gluon plasma

$$\epsilon_{\rm eq} \sim T^4$$
 $n_{\rm eq} \sim T^3$ $n_{\rm eq} \epsilon_{\rm eq}^{-3/4} \sim 1$

mísmatch by a large factor (at weak coupling) $lpha_{
m s}^{-1/4}$

Will the system accommodate the particle excess by forming a Bose-Einstein condensate ?

(JPB, F. Gelis, J. Liao, L. McLerran, R. Venugopalan, 2012)

JETS AND TURBULENT FLOW Medium induced gluon radiation (BDMPS-Z theory) $\frac{1}{\tau_{br}} \sim \frac{k_{\perp}^2}{2\omega} \qquad k_{\perp}^2 \sim \hat{q} \,\tau_{br}$ $\sim \omega, k_{\perp}$ $\tau_{br} \sim \sqrt{\frac{2\omega}{\hat{q}}}$ $\theta_{br} \sim \frac{k_{\perp}}{\omega} \sim \left(\frac{2\hat{q}}{\omega^3}\right)^{1/4}$

Energy loss is dominated by a single emission with maximum energy

Multiple gluon branching can be important, and contribute to transport soft gluons towards large emission angles Independent emissions are enhanced by a fator L/ au_f

$$\sim \left(\alpha_s \frac{L}{t_f}\right)^2$$

Interference effects are subleading

JPB, F. Dominguez, E. Iancu, Y. Mehtar-Tani, arXiv: 1209.4585

$$\frac{\partial D(x,\tau)}{\partial \tau} = \int \mathrm{d}z \,\mathcal{K}(z) \left[\sqrt{\frac{z}{x}} D\left(\frac{x}{z},\tau\right) - \frac{z}{\sqrt{x}} D\left(x,\tau\right) \right]$$

$$\mathcal{K}(z) = \frac{\bar{\alpha}}{2} \frac{f(z)}{[z(1-z)]^{3/2}}, \qquad f(z) = \left[1 - z(1-z)\right]^{5/2}$$

Two features

- radiation (transport of momentum from hard to soft)
- turbulent flow (wave turbulence, nearly local interactions in momentum space = `quasi-democratic' branching)

Estimate

$$\hat{q} = 1 \,\text{GeV}^2/\text{fm}$$
 $\omega_c \simeq 40 \,\text{Gev}$ $\bar{\alpha}^2 \simeq 0.1$ $\mathcal{E}_{\text{flow}} \simeq 15 \,\text{GeV}$
 $L = 4 \,\text{fm}$
from J.-P. B., E. Iancu, Y. Mehtar-Taní, arXív: 1301.6102

SUMMARY

- nice interplay between QFT and the physics of heavy ion collisions

 new phenomena are being predicted (and perhaps even seen)