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The TORCH project  
 a proposed detector for precision time-of-flight  

over large areas  



Introduction 
• TORCH  (Time Of internally Reflected CHerenkov light)  is a closely related 

concept to the PANDA DIRC and Belle TOP detectors, combining timing 
information with DIRC-style reconstruction 
But aiming for higher resolution, to achieve 10–15 ps (per track) for TOF 

• Initial motivation for the development was for particle identification  
in the upgrade of LHCb, the dedicated flavour experiment at the LHC 
Another possible application is shown here for a sterile neutrino search 

• Grant for 4 years’ R&D on TORCH awarded by ERC:  to develop suitable 
photon detectors, and provide proof-of-principle with a prototype module 
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• LHCb searches for new physics beyond the Standard Model at the LHC 
via the precision study of CP violation and rare decays of heavy quarks 

• Successful run in 2010–12, accumulating 3 fb-1 of data (√s = 7–8 TeV) 
Corresponds to > 1012 produced bb events, and many more charm 
 largest recorded samples in the world 

• LHC currently shutdown until end-2014, will then continue at ~ 14 TeV 

• Substantial physics ouput from LHCb:  already ~ 150 papers published 
e.g. world’s best measurement of neutral meson oscillations: 

1.  Motivation 
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LHCb upgrade 

• Upgrade of LHCb approved to increase data rate by an order of magnitude  
to run at luminosity 1–2 × 1033 cm-2

 s-1, for installation in 2018 

• Current bottleneck is hardware trigger level that reduces the 40 MHz bunch 
crossing rate to 1 MHz, for readout into the high-level trigger in a CPU farm 
 read out complete experiment at 40 MHz, fully software trigger 

• RICH system will be kept for particle ID, but one radiator removed (aerogel) 
Space for TORCH in place of M1 (which is part of hardware trigger) 
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Particle identification 
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• K-π separation (1–100 GeV) is crucial for hadronic physics of LHCb 
Currently achieved with three RICH radiators:  aerogel, C4F10 and CF4  

• Aerogel unsuitable for the upgrade, due to low photon yield + high occupancy 
Wish to maintain positive identification of kaons in region below threshold for 
producing light in the C4F10 gas,  i.e. p < 10 GeV 

• ΔTOF (K-π) ≈ 40 ps over 10 m at 10 GeV, so resolution 10–15 ps required  

[Eur. Phys. J. (2013) 73: 2431] 

RICH C4F10 data Cherenkov angles Time of flight 



Sterile neutrino search 
• Another (very different) possible application: 

perhaps new physics is hidden in the lepton sector 

• Extension of the Standard Model with introduction  
of three heavy right-handed neutrinos N1–3  
[M. Shaposhnikov et al., Ann. Rev. Nucl. Part. Sci. 59 (2009) 191]   

• If mN ~ 1 GeV, could be produced in charm decay:  D  NmX,  N  mp 

Conceptual design of an experiment to search for them: 
Due to its mass N would arrive later than a light neutrino by O(100 ps) 
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ALICE TOF 

Roger Forty TORCH 7 

• Current state-of-the-art for large-area TOF:   
Multigap Resistive Plate Chambers (MRPCs)  
of ALICE  (Heavy Ion experiment at the LHC) 

• 80 ps resolution achieved, providing  
K-p separation up to ~ 2.5 GeV 
[Eur. Phys. J. Plus 128 (2013) 44]  

• 160 m2 total area!  
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2.  The TORCH concept 
• How can we go further, to achieve ~ 10 ps resolution? 

Large-area fast photon detectors under development, e.g. by the Picosecond 
Timing project [psec.uchicago.edu], but not yet available 

• Cherenkov light production is prompt  instead use quartz as source of fast 
signal in DIRC-style radiator, with photon detectors around edge 

• Consider a simple design based of quartz bars (as in BaBar):  Cherenkov 
photons produced in quartz propagate to end of bar by total internal 
reflection and their arrival time is measured 

• 1 cm thickness of quartz is enough to  
produce ~ 30 detected photons/track  
 70 ps resolution required/photon 

• However, spread arrival times is much  
greater than this, due to different paths  
taken by photons in the bar 

3 m 

25 ns 

Photon arrival time 
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Planar detector 

~ 1 cm 

L = h/cos qz 

• Need to measure angles of photons, so path length can be reconstructed:   
~ 1 mrad precision required on the angles in both transverse planes 

• This would be prohibitive for a set of thin quartz bars, but borrow the nice 
idea from PANDA:  use a plane of quartz  
→ coarse segmentation (~ 6 mm) is sufficient for the transverse direction (qx) 
Typical lever arm ~ 2 m  angular resolution ≈ 6/(2000 √12)  ~ 1 mrad 

(schematic) 
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Focusing system 
• To measure the angle in the longitudinal direction (qz) use a focusing block 

(also quartz) to convert angle of photon into position on photon detector 
Design shown for a photon detector of 53 mm active dimension 

• Fine segmentation needed along this direction: for angular range = 0.4 rad 
need ~ 128 pixels  angular resolution ≈ 400/(128 √12) ~ 1 mrad  

Representative photon 
paths: 0.55 < qz < 0.95 rad 



Focusing quality 
• Determine detection point r on photon detector 

as a function of photon emission angle qz  

• Calibration curve is very close to linear 
Small quadratic term to minimize aberration: 
qrec = 0.7528 + 0.00749 r – 2.22×10-6 r2 

• Contribution of focusing quality to  
angular resolution = 0.29 mrad  (i.e. small) 

• RMS of transit time through block = 24 ps 
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Residuals 

qz vs. r 



• Micro-channel plate (MCP) photon detectors are suitable for fast timing 
of single photon signal 

 

 

 
• Anode pad structure can in principle be  

adjusted according resolution required,  
as long as charge footprint is small enough 

• Highest granularity commercially-available  
MCP is the Planacon from Photonis 

• We want a linear array of photon detectors  
with adapted pixel size: 128 × 8 pixels 
Development of suitable detector with this layout is a focus of the R&D   

32 × 32 channel Planacon 

Photon detectors 
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~10 mm pores 



Event display 
• Typical event in 

TORCH detector 
from simulation of 
sterile neutrinos 

• Photons colour- 
coded to match 
their parent track 
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Track impact points 
on quartz plate 

Photon impact points 
on detectors along  
each edge  (qz vs. x) 
without dispersion 



Dispersion 
• Chromatic dispersion in quartz leads to 

smearing of the photon images 

• Want to keep wide bandwidth of photon 
detector QE, to maximize photon yield  

• To determine time of propagation in  
quartz need to correct for dispersion: 
From Eg = 3 to 5 eV,  qC = 24 mrad  

• Achieved by measuring photon angles + 
knowing path of track through quartz  
 determine Cherenkov emission angle 
 cos qC = 1/ b nphase 

  t – t0 = L ngroup /c 

 Effectively determine energy of photon 
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Assumed QE  (multi-alkali photocathode) 

Refractive index vs. Eg  



Reconstruction 
• Effect of smearing from dispersion: 

• Use timing information as well as 
spatial information from detector to 
separate signals from each track 

• In this case, calculate time of 
propagation of all photons relative  
to the blue track (p) 

• Hits from that track peak at true time 
Hits from other tracks spread out 
(but peak in time distribution when  
it is calculated relative to that track) 

• Essence of pattern recognition:  
make all track–hit combinations with 
physical Eg, and optimize assignment 
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Resolution 
• Smearing of photon propagation time 

due to detector granularity ~ 50 ps 

• This assumes uncertainty on track 
angles significantly less than 1 mrad 
(which is the case for applications 
considered here) 

• Assume an intrinsic resolution on 
arrival time per photon of ~ 50 ps 

• c.f. MCP results for single photons:     
      s(t) = 34.2 ± 0.4 ps 
      [K. Inami et al., RICH2010]  

• Total resolution per detected photon: 
50  50  70  ps, as required 

Roger Forty TORCH 16 

Resolution due to pixellization 

Resolution on photon detection 



3.  Application in LHCb 
• Tracks in neutrino events mostly  

high momentum (> 10 GeV) 

• At lower momenta  (e.g. for tracks  
to be identified in LHCb events)  
other effects must be accounted for: 

• Average multiple scattering  
of track in 1 cm quartz  (~ 8% X0) 
   q = q0/2 ≈ 1.8 mrad / p [GeV] 

(i.e. small affect above a few GeV, 
but correlated between photons) 

• Difference in Cherenkov angle  
between p and K becomes significant at low momentum — taken into 
account by comparing different mass hypotheses for each track  

• Cherenkov and TOF effects are additive  increases low-p separation 
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LHCb event 
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Zoom on vertex region 

Track impact points on TORCH 

• Typical LHCb event, at luminosity  
of 1033 cm-2

 s-1  (only photons  
reaching the upper edge shown) 

• High multiplicity!  >100 tracks/event 

• Tracks from vertex region colour- 
coded according to the vertex they 
come from (rest are secondaries)  

K 



Modular design 

Roger Forty TORCH 19 

• For the application in LHCb, transverse dimension of plane to be 
instrumented is ~ 5  6 m2  (at z = 10 m) + central hole for beam pipe 

• Unrealistic to cover with a single quartz plate  develop modular layout: 

• 18 identical modules 
each 250  66  1 cm3 
 ~ 300 litres of quartz 
in total (less than BaBar) 

• Reflective lower edge  
 photon detectors only 
needed on upper edge 

 18  11 = 198 detectors 
Each with 1024 pixels 
 200k channels total  
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Effect of modules 
• Illustrate the effect of introducing modules, using the same LHCb event 

• Far fewer hit-track combinations, but reflections from sides give ambiguities  

Module 
considered 

Without dispersion or 
reflection off lower edge 

Including dispersion and  
reflection off lower edge 



Reconstruction 
• As for the previous application, signals can be isolated using the time info 

Calculate time for all hits in module with respect to the kaon track 
 
 
 
 
 
 
 
 
 
 
 
 

• Final choice of module width, and whether to mirror the lower edge,  
will be made following optimization of the performance in simulation 
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Without reflection off lower edge Including reflection off lower edge 



Measuring start-time 
• To determine the time-of-flight, also 

need a start time (t0) 

• This might be achieved using timing 
information from the accelerator, 
but bunches are long (~ 20 cm)  
→ must correct for vertex position 

• Alternatively use other tracks in the 
event, from the primary vertex 

• Most of them are pions, so the 
reconstruction logic can be reversed,  
and the start time is determined from 
their average assuming they are all p  
(outliers from other particles removed) 

• Can achieve few-ps resolution on t0 
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Example from PV of same event 

After removing outliers 

s(t0) = 49 ps 

√534 



• Complete reconstruction studied 
including pattern recognition, 
using a simple simulation of the 
TORCH detector (single plate) 
interfaced to full LHCb simulation 

• Excellent particle ID performance 
achieved, up to 10 GeV as required 
Robust against increased luminosity 
(       after increase by ×10) 

• Included in Letter of Intent for the  
LHCb upgrade  [CERN-LHCC-2011-001] 

• Full GEANT simulation of TORCH  
is in progress, and optimization of  
the modular layout 

Expected performance 
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LHCb simulation:  efficiency vs. p 

(ideal reconstruction, isolated tracks) 

K→K 

p→K 



4.  R&D project 
• ERC project for 4 years R&D started a year ago  (collaboration between  

CERN, Bristol and Oxford Universities, principal investigator N. Harnew) 

• Main focus is on photon detector R&D with industrial partner:  Photek (UK) 

• Three phases defined: 1. extended lifetime  (> 5 C/cm2 required for LHCb)  
                         2. high granularity  (128 × 8 pixels or equivalent)   
                 3. square tubes with high active area  (> 80%) 

• Progress on lifetime using ALD coating 
[see talk of James Milnes, yesterday] 

• Modelling studies under way towards 
achieving required granularity 
64 × 8 may be sufficient if charge-sharing 
between neighbouring pads can be used  

• Need to survive high occupancy in LHCb  
~ 30 hits/detector/event (≈ every 25 ns…) 
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[Photek simulation] 



Electronics 
• Readout electronics is crucial component to achieve desired resolution 

Suitable front-end chip has been developed for the ALICE TOF system: 
NINO + HPTDC  [F. Anghinolfi et al., Nucl. Instr. and Meth. A 533, (2004), 183] 

• Currently using 8 channel versions,  
32-channel available, ~ 15 fC threshold  
[M. Despeisse et al., IEEE 58 (1011) 202]  

• Provides time-over-threshold information 
which can be used to correct time walk 
(+ measure the charge, for charge-sharing)  
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NINO chips 



Detector studies 
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• Studies in progress using 8 × 8 ch. Planacon  
with slow or fast readout, in lab and test-beam 
(no time to do them justice here) 

• Detection efficiency of  83% measured for  
NINO readout at a tube gain of 6 × 105   

• Further studies planned for coming year on 
radiator, gluing, focusing, and Photek tubes  

Test-beam setup 



Conclusions 
• TORCH is a novel concept for a DIRC-type detector 

to achieve high-precision time-of-flight over large areas  

• Proposed for the upgrade of LHCb to complement the  
high-momentum particle ID provided by the RICH system 
Possible alternative application shown for sterile neutrino search  

• Target resolution is 70 ps per photon to give 10–15 ps per track  
and provide clear K-p separation up to 10 GeV 

• Ongoing R&D programme aims to produce suitable MCP photon 
detector within next 3 years, satisfying challenging requirements 
of lifetime, granularity, and active area  
And a prototype module to demonstrate the concept  

• On successful completion of R&D, proposal for LHCb will follow  
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    Additional slides 
• First observation made of CP violation  

in the Bs system by LHCb 

• First evidence of the very rare decay  
Bs

 → m+m-  (later confirmed by CMS+LHCb)  

BR = (2.9 ± 0.7) ×10-9 ! 

• Unfortunately results are so far  
in overall agreement with the  
Standard Model expectations 

• Upgrade of LHCb has been approved 
to increase the data rate by an order of 
magnitude, for installation in 2018 

• TORCH is proposed for that upgrade 
(although it may come a little later) 
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• Studied with simple simulation  
Due to its mass N would fly slower than 
e.g. a light Standard Model neutrino 

• Plot difference of flight time (ttrue) 
between N and massless particle 
over distance travelled before decay 

• TOF resolution < 20 ps would be well 
matched to positively identify them 

• Difference in time of arrival of the two 
muons (m1,m2) is good estimator of ttrue 
Add small correction for flight distance:  
trec = t2 –t1– 400 [(dN+d2)/d1 – 1] 

• Smearing due to this reconstruction 
technique = 7 ps   (<< time resolution) 
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Mean = 180 ps 

    Sterile neutrino TOF 



Focusing element 
• Design of focusing has evolved somewhat, since the initial proposal 

to adjust the angular range: 0.55–0.95 instead of 0.45–0.85 rad 

• Take opportunity to modify attachment to quartz plate, to reduce need for 
polished surfaces in focusing element (other than the mirrored surface)  
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