Results - lab measurements

Results - beamtime

Summary

Tests and comparison of various photon detection devices for the CBM-RICH

Sascha Reinecke for the CBM-RICH collaboration

Bergische Universität Wuppertal

BERGISCHE UNIVERSITÄT WUPPERTAL

Sascha Reinecke

Tests and comparison of various photon detection devices for the CBM-RICH

Results - lab measurements

Results - beamtime

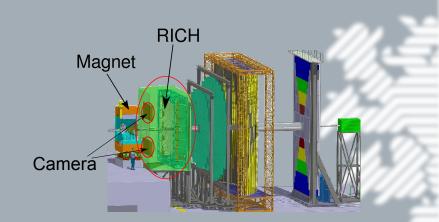
Summary 000

Overview

1 Motivation

2 Results - lab measurements

3 Results - beamtime



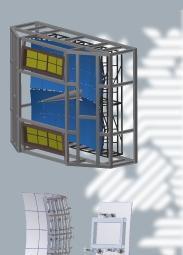
Results - lab measurements

Results - beamtime

Summary 000

The CBM detector

RICH detector directly behind magnet \rightarrow high magnetic stray field, especially in region of camera


Motivation ○●○ Results - lab measurements

Results - beamtime

Summary 000

The CBM-RICH detector

- $\circ\,$ Gaseous RICH detector with $\rm CO_2$ as radiator
- $\circ~$ Curvature radius of mirror 3 m \rightarrow ring radius for electrons $\approx 4.6\,cm$
- Operating wavelength range 200 800 nm $\rightarrow CO_2$ transmission cut-off at 190 nm
- → MAPMTs/MCPs as photon detection devices (approx. 800 pieces @ 55k channels)
- The main goal: separation of electrons and pions (\rightarrow pion suppression)

Motivation ○○● Results - lab measurements

Results - beamtime

Summary 000

Tested MAPMTs and MCPs

MAPMT: Hamamatsu H8500 (8-stage SBA version: H10966)

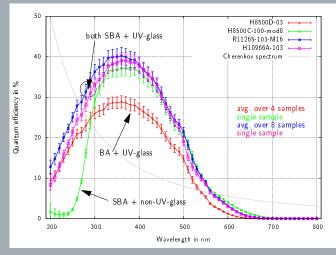
- $\,\circ\,$ Size: 52 mm \times 52 mm, 8 \times 8 pixel
- UV-extended borosilicate glass, Bialkali cathode, 12 dynode stages
- also tested version with Superbialkali cathode and 8 dynode stages
- for comparison we also got "bad" marked (by Hamamatsu) pieces

MAPMT: Hamamatsu R11265

- Size: 26 mm imes 26 mm, 4 imes 4 pixel
- UV-extended borosilicate glass, Superbialkali cathode, 12 dynode stages
- Hamamatsu recommended MAPMT for single-photon measurements

MCP: Photonis XP85012

- Size: 59 mm imes 59 mm, 8 imes 8 pixel
- quartz glass, Bialkali cathode
- \circ advantage over PMTs: magnet-field resistance (\sim 1 2 T); better timing

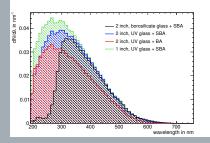

Μ	ot	at	0	

Results - lab measurements <u>
•••••</u> Results - beamtime

Summary

Quantum efficiency (I)

 \rightarrow SBA cathode with nearly 30 % higher QE than BA at \sim 350 nm, in deep-UV no difference (considered same PMT type)


Results - lab measurements

Results - beamtime

Summary 000

Quantum efficiency (II)

Cherenkov spectrum folded with QE, mirror reflectivity and $\rm CO_2$ absorption \rightarrow results specifically for our RICH

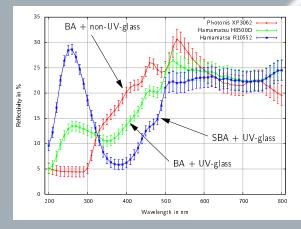
ightarrow area as measure for number of detected hits (neglecting dynode system)

MAPMT type	thickness	window	photo-	no. of	relative no. of detected
	of front glass		cathode	dynodes	Cherenkov photons (%)
R11265-103-M16	0.8 mm	UV-window	SBA	12	100
H10966A-103	1.5 mm	UV-window	SBA	8	89.7
H8500D-03	1.5 mm	UV-window	BA	12	71.6
H8500C-100-mod8	1.5 mm	borosilicate glass	SBA	8	62.6

\rightarrow Why no gain of SBA cathode below \sim 250 nm (at 2-inch)?

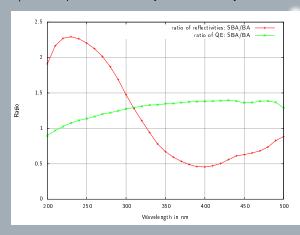
Mot		io	

Results - lab measurements


Results - beamtime

Summary 000

Reflectivity of PMT cathodes

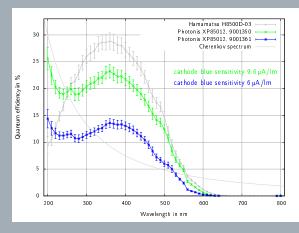

Specular reflectivity measured under $\sim7^\circ$ (diffuse reflectivity not measured, necessary for quantitative evaluation)

ightarrow possible explanation for behaviour below 250 nm

 \rightarrow SBA cathode with highly increased reflectivity below 300 nm

Ratio of SBA/BA for quantum efficiency and reflectivity

 \rightarrow correlation between reflectivity and QE clearly visible


Results - lab measurements

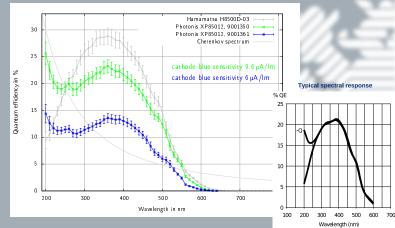
Results - beamtime

Summary

Quantum efficiency (III)

$2\,\times\,$ Photonis XP85012 + Hamamatsu H8500 for comparison; all BA

- \rightarrow 1 MCP out of Photonis' specifications (min. c.b.s. 7 μ A/lm, avg. 8.5 μ A/lm)
- ightarrow both very good at smallest wavelengths (perfect for Cherenkov spectrum)
- \rightarrow QE in UV underestimated, see e.g. also NIM A325 (1993) 367-369


Results - lab measurements

Results - beamtime

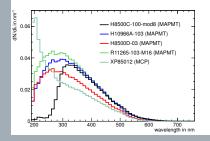
Summary

Quantum efficiency (III)

2 \times Photonis XP85012 + Hamamatsu H8500 for comparison; all BA

- \rightarrow 1 MCP out of Photonis' specifications (min. c.b.s. $7\,\mu\text{A}/\text{Im},\,\text{avg.}$ 8.5 $\mu\text{A}/\text{Im})$
- \rightarrow both very good at smallest wavelengths (perfect for Cherenkov spectrum)
- ightarrow QE in UV underestimated, see e.g. also NIM A325 (1993) 367-369

Results - lab measurements


Results beamtime

Summary 000

Quantum efficiency (IV)

Cherenkov spectrum folded with QE, mirror reflectivity and ${\rm CO}_2$ absorption; with additional MCP (the good one)

 \rightarrow results specifically for our RICH

ightarrow area as measure for number of detected hits

MAPMT type	thickness	window	photo-	no. of	relative no. of detected
	of front glass		cathode	dynodes	Cherenkov photons (%)
R11265-103-M16	0.8 mm	UV-window	SBA	12	100
H10966A-103	1.5 mm	UV-window	SBA	8	89.7
XP85012	?	UV-grade fused silica	BA	MCP	75.7
H8500D-03	1.5 mm	UV-window	BA	12	71.6
H8500C-100-mod8	1.5 mm	borosilicate glass	SBA	8	62.6

CBM-RICH prototype

Up to now only differences and effects of cathodes investigated!

- For proving and evaluating our RICH-concept, ring finding and fittig algorithms, performance (especially number of photons per ring), etc. building of CBM-RICH prototype
- One main goal: in-beam performance comparison of different photon detection sensors
- All important properties of equal size as in full CBM-RICH later
- Tested during two beamtimes at CERN
- More details on prototype and various investigations later by Tariq Mahmoud

Beamtime	overview		
000	000000	000000000000	000
Motivation	Results - lab measurements	Results - beamtime	

- $\circ\,$ Beamtime at PS accelerator at CERN, beamline T9 (ightarrow up to ightarrow 10 GeV/c)
- Data taken mostly with electrons at 3 GeV/c (ultra-relativistic)
- Two different kinds of data:
 - Cherenkov data
 - LED pulser data (simultaneously taken between beam spills; LED homogeneously illuminating whole camera)

Mot	va	ti	

Results - lab measurements

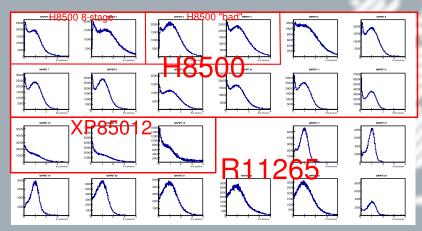
Results - beamtime

Summary 000

Beamtime

RICH prototype camera

- Camera of RICH box with various MAPMTs/MCPs: 12x H8500, 8x R11265 (both MAPMTs), 3x XP85012 (MCPs), some of them covered with wavelength shifting film (WLS, \rightarrow milky-looking surface)
- read out with self-triggered n-XYTER electronics → noise negligible; only time-cut of 100 ns applied (no ADC-cut except hardware threshold)


We would like to thank J. Schwiening for borrowing us 2 MCPs for this beamtime!

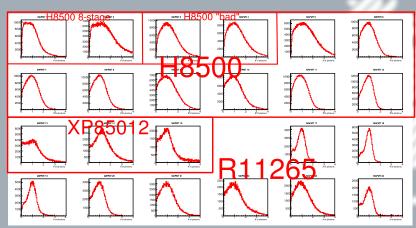
Results - lab measurements

Results - beamtime 000●0000000000

Single-photon sum-spectra - corrected

Corrected SP spectra; correction factor based on fit with exponential (crosstalk) + Gaussian (1 photon) + Gaussian (2 photons)

 \rightarrow all types with different single-photon quality

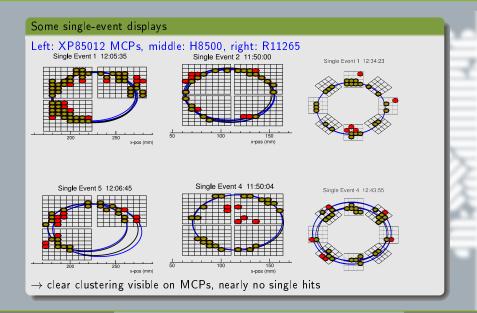

Results - lab measurements

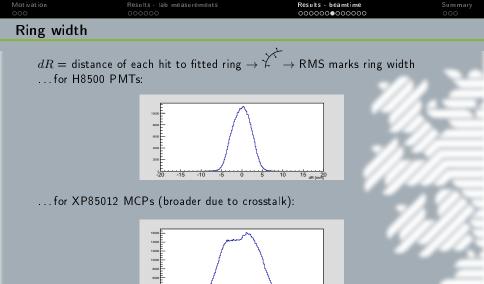
Results - beamtime

Summary

Single-photon sum-spectra - corrected and crosstalk suppressed

Crosstalk suppression: only isolated hits \rightarrow


 \rightarrow peak at 0 only due to crosstalk


Mot		

Results - lab measurements

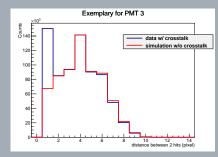
Results - beamtime ○○○○○●○○○○○○○ Summary 000

Single-event displays

BUT: ring finder not optimized for crosstalk usage

-15

-5


2000 E

15 _R _20

Crosstalk as	stimation			
		000000000000		
Motivation	Results - lab measurements	Results - beamtime	Summary	

Method for crosstalk estimation:

- 1 Select only events with 2 hits per PMT (for LED data)
- 2 Study distribution of distances between both hits ightarrow with crosstalk
- \bigcirc Compare with simulation \rightarrow without crosstalk
- ④ Excess in first bin (\equiv neighbouring pixel) is measure for crosstalk amount

Problem: absolute crosstalk result depends on absolute illumination by LED

Sascha Reinecke

Motivation 000	Results - lab measurements	Results - beamtime ○○○○○○○●○○○○	Summary 000
Crosstalk a	mount from dedicated	LED run	
2. indicati here 3. inc	on for higher crosstalk of MC on: single-event display/ring v dication: quantitative compari lumination)	•	ected
	histo amount of	crosstalk per pmt	
	420 4 99 00 5 00 5 00 1-12 = 100 0 1-12 0 1-	∑ ⁹ / ₈ / ₈ / ₈ / ₈ 13-15 = 17-24 = XP85012 R11265	

 \rightarrow MCPs with much higher crosstalk amount, R11265 less than H8500 \rightarrow Conclusions for absolute numbers not yet possible

40

20

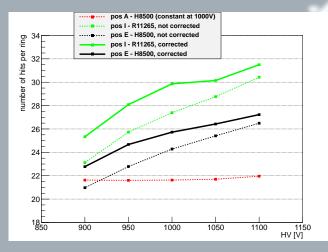
12 14

20.7 9.1

16

5.6

3.8 3.2 10.7 11.0

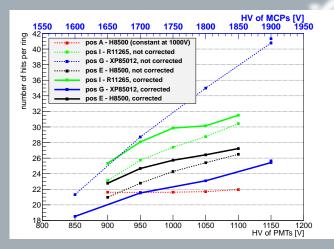

> 22 24 PMT number

Results - lab measurements

Results beamtime 000000000●000 Summary 000

Performance for various HVs - number of hits per ring

Solid lines allow for quantitative comparison of detection efficiency of different sensors (here for constant hardware threshold of 28)


(correction for temperature/pressure, geometrical coverage and crosstalk)

Results - lab measurements

 Summary 000

Performance for various HVs - number of hits per ring

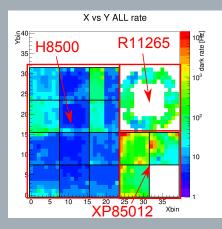
Solid lines allow for quantitative comparison of detection efficiency of different sensors (here for constant hardware threshold of 28)

(correction for temperature/pressure, geometrical coverage and crosstalk)

Results - lab measurements Motivation Results - beamtime 00000000000000 Performance for various hw thresholds - number of hits per ring Solid lines allow for quantitative comparison of detection efficiency of different sensors (here for constant HV for each sensor) pos A - H8500, corrected pos I - R11265, corrected Number of hits per ring pos G - XP85012, corrected 34 32 30 28 26 24 22 20 18 16

(correction for temperature/pressure, geometrical coverage and crosstalk)

20 25 30 35 40 45 50 55 60


75 80

Threshold in a.u.

Results - lab measurements 000000 Results - beamtime

Summary

Noise measurements

- total dark hit rate per pixel in Hz, after several days in complete darkness
- measured with self-triggered n-XYTER readout system
- threshold: standard threshold as in previous plots, few % of single photon peak position
- roughly comparable threshold (relative to single photon peak) for all sensors

 \rightarrow per-pixel rates for H8500 mostly < 10 Hz, R11265 up to a few 100 Hz (due SBA), XP85012 partially up to a few kHz

Motiv	io	

Results - lab measurements

Results - beamtime

Summarized results up to now

Presented measurements

- Quantum efficiency measurements in lab
- Beamtime measurements with prototype, especially crosstalk and detection efficiency
- Crosstalk estimation at the moment only qualitatively possible

Main results

- \circ R11265 PMT with better performance than H8500 \rightarrow less crosstalk, more hits per ring
- XP85012 MCP with comparable detection efficiency to H8500, though higher amount of crosstalk

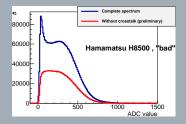
 \Rightarrow R11265 for our usecase the most promising solution (performance-wise)! But 1.5× the price of H8500 for same covered area ...

New Hamamatsu H12700 PMT

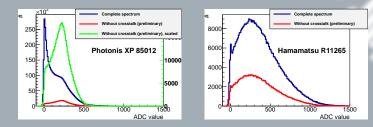
Preliminary specs

- Combines collection efficiency of R11265 with dimensions of H8500
- Same size and price as H8500
- But still only BA cathode
- $\circ\,$ Optimized dynode structure for better collection efficiency (according to simulations 60 $\%\,$ \rightarrow 87 %)
- Therefore clearly better defined single-photon peak

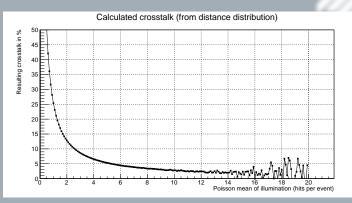
 \rightarrow We are impatiently waiting for test samples!


Thank you for your attention!

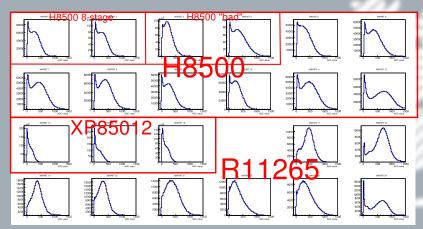

Sascha Reinecke


Tests and comparison of various photon detection devices for the CBM-RICH

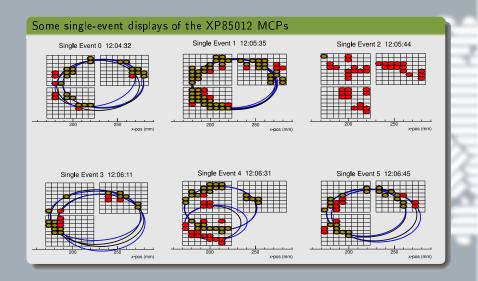
Backup slides


ADC spectra with and without crosstalk subtraction

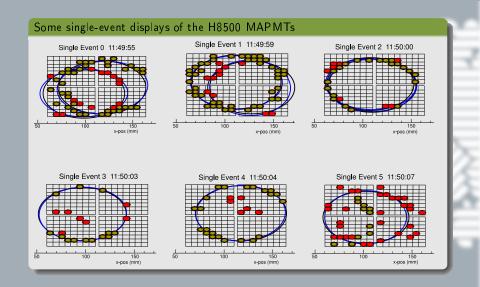
Simulation of calculated crosstalk amount for different illumination hit multiplicities (assumed crosstalk 10%):

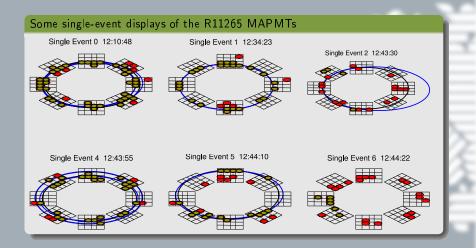


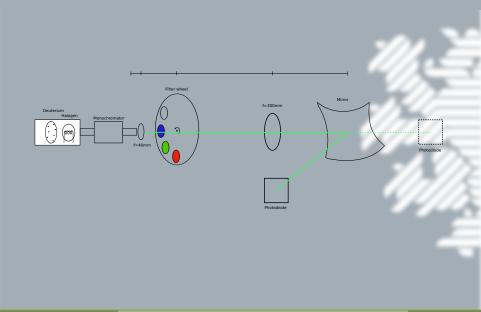
... to come



Single-photon sum-spectra (all 64/16 pixel)


Single-photon (SP) spectra of all 23 tested MAPMTs and MCPs


Single-event displays (I) - XP85012


Single-event displays (II) - H8500

Single-event displays (III) - R11265

Setup for reflectivity measurements

Sascha Reinecke

Tests and comparison of various photon detection devices for the CBM-RICH